دسته بندی | زمین شناسی |
بازدید ها | 19 |
فرمت فایل | doc |
حجم فایل | 19 کیلو بایت |
تعداد صفحات فایل | 16 |
روش تیتراسیون آمپر سنجی -u 504500
گفتگوی عمومی
مهارت و دقت لازم، در تیتراسیون آمپرسنجی از روشهای کالوریمتری است. رسوبات کلر که بیش از 2mg/L است، با استفاده از نمونه های کوچکتر و یا با استفاده از رقیق سازی بوسیله آبی که نه کلر رسوبی دارد ونه ترکیبات کلر دار، به بهترین شکل ، اندازه گیری می شود. این روش می تواند برای تعیین کل کلر به کار رود و همچنین بین کلر ترکیبی و آزاد، در این رومش تفاوت وجود دارد. جداسازی بیشتر، برای اجزای مونوکلروآمین و دی کلروآمین با کنترل کردن غلظت KI و PH قابل کنترل است.
a . نکته: روش آمپرسنجی اقتباسی است خاص از اصول قطبش سنجی ( پولاروگرافیک: وابسته به اندازه گیری شدت جریان های الکتریسیته در یک محلول ) . کلر آزاد در PH ای بین 6.5 و 7.5 تیتر می شود، بازه ای که در آن کلر ترکیبی به آهستگی واکنش می دهد. در عوض، کلرترکیبی، در حضور مقدار مناسبی KI در بازه PH بین 3.5 تا 4.5 تیتر می شود. وقتی که کلر آزاد تعیین مقدار شد، PH نباید از 7.5 بیشتر شود زیرا پیشرفت واکنش در مقدار PH بالاتر کند می شود. همچنین PH نباید کمتر از 6.5 باشد زیرا در مقادیر پایین تر PH ، کار ترکیبی ممکن است در غیاب ید وارد واکنش شود. بعد از تعیین مقدار کلر ترکیبی ، PH نباید کمتر از 3.5 شود ، زیرا که در PH های پایین تر عوامل مزاحم دخالت می کنند. همچنین PH نباید بیشتر از 4.5 باشد، زیرا که واکنش یدی در مقادیر بالاتر PH، قابل اندازه گیری نیست. مونو کلرو آمین نسبت به دی کلرو آمین تمایل بیشتری دارد تا با ید واکنش دهد. که این امر ، تمایز بیشتر این دو ماده را فراهم کرده. با افزودن مقدار کمی KI ، در بازه PH خنثی ، می توان مقدار مونو کلرو آمین را تخمین زد. پایین آوردن میزان PH تا بازه اسیدی و افزایش غلظتKI امکان تعیین دی کلرو آمین را به طور مجزا فراهم می کند. کلرو آمین های آلی هم بسته به فعالیت کلر آن ها در ترکیب آلی، همچون کلر آزاد، مونو کلرو آمین یا دی کلرو آمین قابل تعیین است.
اکسید فیل آرسین حتی در محلول رقیق هم پایدار است و هر مول آن با دو کلی والان هالوژن وارد واکنش می شود. یک سل آمپر سنجی خاص برای آشکار سازی نقطه پایان تیتراسیون کلر این اکسید فنیل آرسین رسوبی به کار می رود. سلول شامل دو الکترود است. یکی الکترود مرجع خنثی ( قطبش ناپذیر) که در محلول نمکی غوطه ور شده و دیگری الکترود کاملا قطبش پذیر فلز نجیب که در تماس با هر دو محلول نمکی و نمونه تیتر شونده است. در برخی کاربردها، انتخاب پذیری، افزودن 200 میلی ولت به الکترود پلوتونیم در مقابل نقره – نقره کلراید بهبود می یابد. یک دیدگاه دیگر، تعیین نقطه پایانی است که در آن از الکترود های دوگانه پلوتونیم و سل جیوه استفاده می شود. به همراه یک تقسیم کننده ولتاژ به منظور تحت تاثیر قرار دادن پتانسیل در بین الکترود ها و همچنین یک میکرو آمپر متر نیز به کار می رود. اگر کلری در نمونه باقی نمانده باشد، عددی که میکرو آمپر متر می خواند به طور نسبی کم است. زیرا که سلول قطبیده شده هر چه میزان رسوب در نمونه بیشتر باشد، عددی که میکرو آمپر متر می خواند بیشتر است. وسیله اندازه گیری به تنهایی به عنوان آشکار ساز نقطه صفر عمل می کند. به عبارت دیگر ، چیزی که وسیله اندازه گیری به طور واقعی، می خواند، مهم نیست. بلکه فراتر از آن عدد نسبی که در پیشرفت تیتراسیون می خواند مهم است. افزایش تدریجی اکسید فنیل آرسین، بدلیل کاهش مقدار کلر، باعث می شود که سل بیشتر و بیشتر قطبی شود. وقتی که با اضافه کردن اکسید فنیل آرسین و دیگر تغییری در عددی که آمپر سنج نشان می دهد، رخ ندهد، نقطه پایانی مشخص می شود.
b . عوامل مزاحم : امکان تعیین دقیق مقدار کلر آزاد در حضور نیتروژن تری کلرید NCL3 یا دی اکسید کلر وجود ندارد. زیرا کهاین مواد به صورت جزئی مثل کلر آزاد تیتر می شوند. در صورت حضور NCL3 ، این ماده هم مانند کلز آزاد و هم مانند دی کلرو آمین بطور جزئی تیتر می شود و خطای مثبتی برای هر دو جزء با سرعت %/min 5.1 ایجاد می کند. همچنین ممکن است برخی کلرو آمین های آلی هم در هر مرحله تیتر شوند. مونو کلرو آمین در کسر کلر آزاد دخالت می کندو دی کلرو آمین می تواند عامل مزاحم در کسر مونو کلرو آمین باشد، مخصوصا در دماهای بالا وزمان های طولانی تیتراسیون. هالوژن های آزاد به جز کلر، مثل کلر آزاد تیتر می شوند. کلر ترکیبی با یون های ید واکنش می دهد تا تولید ید کند. تیتراسیون کلرترکیبی احتیاج به افزودن KI دارد و وقتی که تیتراسیون برای کلر آزاد بعد از تیتراسیون کلر ترکیبی انجام می شود، ممکن است نتایج نادرست باشند. مگر اینکه سل اندازه گیری با آب مقطر به طور کامل بین تیتراسیون ها ، تست شود داده شود.
در نمونه ها به عوامل مزاحم مس اشاره شده که از سیم های مسی ایجاد می شود و یا بعد از عملیات سولفات مس سنگین مخازن بامس فلزی که روی الکترودها پوشانده شده، بوجود می آید. هچنین یون های نقره، الکترود را سمی می کند. عوامل مزاحم در برخی آبهای بشدت رنگی و در آبهایی که در آنها عوامل سطح فعال (surface active) وجود دارد، در تیتراسیون دخالت می کنند. دمای خیلی پایین، پاسخگویی به سل اندازه گیری را کاهش می دهد. بنابراین به زمانی طولانی برای تیتراسیون احتیاج است، اما دقت تاثیر چندانی ندارد. کاهش (احیاء) در سرعت واکنش با مقادیر PH بالای 7.5 اتفاق می افتد، برای غلبه بر این حالت، همه نمونه ها را تا PH=7 یا پایین تر ، بافری می کنیم. به عبارت دیگر، بعضی مواد، مثل منگنز، نیترات و آهن مزاحمت ایجاد نمی کنند. هم زدن شدید تیتراتورهای تجاری می تواند مقادیر کلر را با عمل تبخیر پایین بیاورد. وقتی که رقیق کننده برای نمونه های شامل مقادیر بالای کلر بکار می رود، دقت کنید که آب مقطر، از کلر، آمونیاک و ترکیبات کلر، عاری باشد.
دسته بندی | زمین شناسی |
بازدید ها | 27 |
فرمت فایل | doc |
حجم فایل | 148 کیلو بایت |
تعداد صفحات فایل | 13 |
صنعت رنگ سازی
دید کلی
رنگ در دنیای امروز نقش بسیار مهمی در پرورش ذوق و قرایح بشری و ارضای نیازهای زیبا شناختی وی ایفا می کند. بدین جهت است که احساس رنگ را به تعبیری حس هفتم میگویند. انسان در پهنه تولید تزئین خانهها ، پوشاک و حتی نوشابهها در هنر ، نقاشی ، صنایع کشتیرانی و امور ارتباطات محصولات مصرفی در صنایع فضایی و خلاصه در همه شئونات با رنگ سر و کار دارد. بطور کلی ، از رنگ علاوه بر ایجاد زیبایی محیط ، جهت حفاظت اشیا در مقابل عوامل طبیعی و غیره استفاده میشود.
تاریخچه
سابقه استفاده از مواد رنگی توسط انسان ، به دوران غارنشینی میرسد. اولین کاربرد واقعی و عملی مواد رنگی را میتوان در ساختن کشتی نوح مربوط دانست که برای جلوگیری از نفوذ آب و پوسیدگی آن ، از مواد رنگی استفاده شده بود. بعدها از مواد رنگی برای حفاظت چوب از پوسیدگی در بناهای چوبی و زمانی که استفاده از وسایل آهنی متداول شد، برای جلوگیری از زنگ زدن آنها استفاده میشد .
اجزای تشکیل دهنده رنگها
هر رنگ اصولا از دو قسمت اصلی تشکیل شده است که عبارتند از:
رنگدانه
ماده رنگی نامحلول در آب است ( خاک رس ناخالص رنگی و پودر برف از سنگهای رنگی بهعنوان اولین رنگدانه ها مورد استفاده انسان قرار میگرفتند ).
محمل رنگها
مایعی است که با رنگدانه مخلوط شده ، کاربرد آنرا آسان میکند و در چسبیدن آن ، کمک میکند ( از سفیده تخم مرغ ، چسب عسل محلول قند بهعنوان محملهای رنگ استفاده میشد). امروزه متداولترین محملهای رنگدانهها را آب یا روغن تشکیل میدهد. از اینرو رنگها را به دو دسته رنگهای روغنی و رنگهای آلی تقسیم میکنند.
انواع رنگدانه
اکسیدها
لیمونیت ( Fe2O3.2H2O ) برای تهیه رنگ قرمز مصرف میشود و یکی از قدیمیترین رنگدانههاست.
هماتیت ( Fe2O3 ) برای تهیه رنگ قرمز روشن بکار میرود.
دیاکسید تیتان ( TiO2 ) برای تهیه رنگ سفید روشن و بسیار مرغوب که در هوا تیره نمیشود، بکار میرود. معمولا آن را با سولفات باریم مخلوط میکنند.
اکسید روی ( ZnO ) که از مهمترین رنگدانه های سفید است و از تجزیه کربنات روی و یا سوزاندن فلز روی در هوا حاصل میشود.
سرنج ( Pb2O3 ) که رنگ سرخ یا قرمز تیره دارد و بیشتر برای پوشانیدن سطح قطعات فولادی بهمنظور حفاظت آنها از زنگ زدن کاربرد دارد.
سولفید روی و لیتوپن
سولفید روی برای تهیه رنگ سفید مات مصرف میشود و از مزایای آن ، این است که بر خلاف سفیداب سرب در هوا سیاه نمیشود. این رنگدانه معمولا در تجارت بصورت مخلوطی از سولفید روی و سولفات باریم به نام لیتوپن مصرف دارد که رنگ سفید بسیار مرغوب است.
سفیداب سرب
این رنگ دانه عمدتا شامل Pb(OH)2 , PbCO3 که از قرن ها پیش شناخته شده بود. قدرت پوشش آنها زیاد است، ولی در هوا بهعلت وجود H2O به مرور سیاه میشود. برای تبدیل مجدد آن به رنگ سفید میتوان از تاثیر پراکسید هیدروژن بر آن استفاده کرد.
دوده چراغ و زغال استخوان
یکی از اجزای رنگ سیاه و مرکب است و برای تغییر رنگ سفید به میزان دلخواه نیز مصرف میشود.
رنگدانههای فلزی
مانند پودر آلومینیم در روغن جلا که از آن برای حفاظت وسایل آهنی و فولادی استفاده می شود
برنز آلومینیم ( آلیاژ Al, Cu ) در روغن جلا که از آن ، برای ایجاد رنگ بسیار زیبای طلایی برای دور قابها و ... استفاده میشود.
رنگدانههای الوان
رنگدانههای آبی: مهمترین این این رنگدانهها ، آبی پروس و آبی نیلی یا لاجورد است. آبی پروس یکی از مهمترین رنگهای آبی است. لاجورد نیز یکی از رنگهای آبی مرغوب است که از حرارت دادن مخلوط کائولین ، کربنات سدیم ، گوگرد و زغال سنگ در غیاب هوا حاصل میشود.
رنگ دانه های زرد: مهم ترین این رنگدانهها ، کرومات روی و کرومات سرب است. از قطران زغال سنگ نیز رنگدانههای الوانی بصورت نمکهای نامحلول فلزات بدست میآید که در هیدروکسید آلومینین بصورت ژله میبندد. این ژله را پس از خشک کردن بهصورت پودر با رنگدانههایی نظیر کربنات کلسیم و سیلسس مخلوط میکنند و در انواع رنگهای مورد نیاز بکار میبرند.
رنگهای روغنی
در این نوع رنگها ، رنگدانه را در یک روغن خشک شونده که استر گلیسیرین با اسیدهای چرب ، نظیر اسیدهای اولئیک و یا لینولنیک میباشد، حل میکنند. این روغنها در هوا اکسیده شده ، به ترکیبات سیر شده تبدیل میشوند و لایهای سخت مقاوم و محافظ تشکیل میدهند که از نفوذ آب در رنگدانه جلوگیری میکنند.
رقیقکننده
برای رقیق کردن و سهولت کاربرد رنگ بکار میرود و معمولا یک حلال هیدروکربنی نظیر ترپنتین است که به روغن تربانتین شهرت دارد.
خشک کننده
یکی از اجزای رنگهای روغنی است که در حقیقت نقش کاتالیزور را در تسریع اکسیداسیون و خشک شدن رنگها را دارد و معمولا مخلوطی از اکسید های سرب ، منگنز و کبالت در ( روغن بزرک ) بصورت استر مصرف میشود.
رنگهای پلاستیکی
با اضافه کردن رزینهای سنتزی نظیر رزین حاصل از فنل و فرمالدئید که خاصیت پلاستیکی دارد، در روغن جلا ، رنگهای پلاستیکی حاصل میشود. این نوع رنگها به خاطر دوام و قابل شستشو بودن ، اهمیت و کاربردهای زیادی داردن.
دسته بندی | زمین شناسی |
بازدید ها | 26 |
فرمت فایل | doc |
حجم فایل | 39 کیلو بایت |
تعداد صفحات فایل | 29 |
رسوب دهی لایه های نازک سخت ویا نرم
مقدمه
مورفولوژی یک پوشش بطور عمده به فناوری بکار گرفته شده بستگی دارد. بطور کلی روشهایی که در آن پوشش از فاز بخار رسوب داده میشوند. را میتوان دو گروه اصلی تقسیم کرد روش رسوب شیمیایی بخار CVD و روش رسوب فیزیکی PVD بعلاوه از روشهایی به نام روشهای کمکی یا تحریک شده نیز استفاده میشود. بعنوان مثال روش کمکی پلاسمای رسوب شیمیایی بخار PA-CVD یا فرآیندهای دما توسط مانند روش دما متوسط CVD که با MT-CVD نمایش داده میشود نیز گسترش پیدا کرده است. همانطور که در شکل 5.1 نشان داده شده است بعنوان مثال به روشهای فوق مواردی مثل پرایدهای نسوز، کارمیدها، نیتریدها ،اکسیدها وترکیب های مختلفی از این گونه پوششها را میتوان رسوب داد.
5.2 روشهای رسوب شیمیایی بخار
5.2.1 طبقه بندی فناوریهای CVD
در روش رسوب شیمیایی بخار واکنش کننده ها بصورت گاز تامین شده و واکنشهای شیمیایی در اثر گرما در سطح زیر لایه گرم شده انجام میشوند. در روشهای CVD معمولا فرآیند در درجه ر600 تا 1100 درجه سانتیگراد انجام میشود هزینه فرآیندهایی که در درجه وارستای پایین تر نیز کار می کنند بکار گرفته شده است. در جدول 5.1 میتوان روشهایی از CVD که بیشتر در صنعت ارز برش بکار می رود را ملاحظه کرد.
In به شکل سنتی خود فناوری CVD بدون فرآیندهای کمکی در فشار محیط مثل پوشش دهی در فشار محیط APCVD ,CVD یا در فشار پایین مثل پوشش دهی به فشار کم CVD استفاده میشود. از فناوری APCVD که به پوشش دهی با دمای بالای (HT-CVD) CVD نیز معروف است بعنوان پرمصرف ترین روش پوشش میتوان نام برد.
در روش کلاسیک پوشش دهی CVD که از سال 1969 در صنعت بکارگرفته شد از در یک لحظه ای حفاظت شده از اتمسفر محیط،تحت گاز هیدروژن فشار 1 اتمسفر یا کمتر تا 1000C گرم میشود. همچنین ترکیبات تبخیر شدنی به اتمسفر هیدروژن اضافه میشوند. تا بتوان ترکیبات فلی وغیرفلزی را رسوب داد. یک جنبه مشترک تمام فناوریهای CVD افزودن عنصر مورد نظر در پوشش به شکل یک هالوژن مثل Tic4 در ورد لایه های Ti(cN) یا TiN ,Tic یا مخلوطی از هالوژنها مثل Ticl4 +Bcl3 در مورد لبه های TiB2 میتوان نام برد.
5.2.2 روش تحت فشار اتمسفر رسوب شیمیایی بخار (APCVD)
وسایل بکار گرفته شده برای رسوب دهی لایه TiN به روش CVD در شکل 5.2 ارائه شده است در این روش یک محفظه واکنش گرم شده و وسایل انتقال گاز مورد نیاز است. در بیشتر موارد زیر لایه به روش هرفت یا تشعشعی ازداخل محفظه پوشش دهی گرم میشود. فرآیند با تغییر دادن درجه حرارت قطعات تحت پوشش ترکیب شیمیایی و فشار گانه ها کنترل میشود. همانطور که قبلا اشاره شد واکنشهای هالیه فلزات مثلا با هیدروژن ،نیتروژن یا متان. بکار گرفته میشود تا بتوان پوششهایی مثل انواع نیترید ها یا کاربیدهای فلزات را ایجاد کرد.
بعنوان مثال واکنشهای ذیل برای ایجاد پوششهای به ترتیب نیترید نتیتانیوم وکاربید تیتانیوم بکار گرفته میشود:
لایه اکسید آمونیومو را میتوان با واکنش ذیل ایجاد کرد.
With با مخلوطهایی از هالیه فلزات، هیدروژن ،اکسیژن، نیتروژن ،هیدروکربنها و ترکیبات بر، پوششهای مختلفی از نیترید، کاربید و براید فلزات را میتوان به روش CVD ایجاد کرد. در حال حاضر متداولترین پوشش های ایجاد شده به روش هستند (شکل 5.3) لایه های ایجاد شده به روش CVD ساختار میکروسکوپی ستونی دارند هر چند رسوبات اولیه گاهی به شکل هم محور هستند.
بطور خاص اندازه دانه وساختار میکروسکوپی اولیه به شدت به شرایط اعمال شده در فرآیند بستگی دارد.
دسته بندی | زمین شناسی |
بازدید ها | 16 |
فرمت فایل | doc |
حجم فایل | 39 کیلو بایت |
تعداد صفحات فایل | 64 |
خوردگی
تغییراتی راکه در مواد در نتیجه واکنش های شیمیایی یا الکتروشیمیایی سطحی با محیط اطراف آنها ایجاد شده و باعث تخریب تدریجی قطعات می شود خوردگی نامند. مقاومت شیمیایی به عنوان قابلیت ماده از نظر ایستادگی در مقابل تخریب در اثر واکنش شیمیایی بین سطح تماس قطعه و محیط اطراف آن (اعم از مایع مانند آب ،گاز مانند( s, o2 , n o x Nh3 )جامد مانند ماده سوخت هسته ای و جدار داخلی ظرف حاوی سوخت ) تعریف شده است ، کافی نبودن این مقاومت شیمیایی یکی از دلایل برای محدود بودن طول عمر قطعات یا ماشین آلات وتجهیزات صنعتی است . بنا بر این خوردگی واکنشی نامطلوب است که سبب جداشدن تدریجی اتمها از سطح قطعه و تخریب آن میگردد .
سرعت فعل و انفعال خوردگی بستگی به عواملی مانند درجه حرارت و غلظت محیط اثر کننده خواهد داشت . البته عوامل دیگری مانند تنش مکانیکی و فرسایش میتواند به خوردگی کمک کند .
پدیده خوردگی بیشتر در فلزات و آلیاژهای آنها ظاهر می گردد ، زیرا که اغلب فلزات و آلیاژها تمایل به ایجاد ترکیباتی با اتمها یا مولکولهایی از محیط اطراف خود ( در بسیاری از حالات محیط اکسید کننده از ناپایداری کمتری برخوردار است ) که تحت شرایط موجود از لحاظ ترمودینامیکی پایدار است ، دارد.
مواد غیر فلزی مانند مواد سرامیکی ( بویژه از نوع اکسید) و پلیمری تحت تاثیر واکنشهای الکترو شییمیایی قرار نمی گیرد ، اما تحت شرایطی واکنش های شیمیایی میتواند بطور مستقیم بر روی این مواد تاثیر نموده و موجب تخریب آنها گردد .برای مثال سرامیکهای نسوز در درجه حرارتهای بالا میتواند با نمک مذاب واکنش های شیمیایی انجام دهد . پلیمرهای آلی هم میتواند با انجام واکنش شیمیایی با حلالهای آلی تخریب گردد . بعضی
اوقات هم مولکولهای آب می تواند توسط بعضی از مواد آلی جذب شده و سبب ایجاد تغییراتی در ابعاد و خواص مکانیکی آنها گردد.
مثالهایی که می توان از مشاهدات عینی روزمره خود برای خوردگی بیان نمود عبارت است از : خوردگی لوله های آب ، خوردگی بدنه اتومبیل در هوای مرطوب، خوردگی کشتی ها ، خوردگی تجهیزات و ماشین آلات در صنایع مختلف ، بویژه صنایع شیمیایی در مجاورت هوای مرطوب و یا در مجاورت با گازها ( مانند NH3 ، Nox ، H2S ، SO2 ) خوردگی شوفاژها با آب گرم ، خوردگی تجهیزات ماشین های تولید بخار و تور بین های گازی .
1-1- خوردگی الکترو شیمیایی
فعل و انفعالات خوردگی بیشتر الکترو شیمیایی است . آبی که شامل نمکهای محلول است ( مانند آ ب دریا، آب لوله کشی ، آب باران ) یکی از مایعات الکترو لیتی است که سبب انجام بیشترین واکنش های خوردگی میگردد .برای درک بهتر این این نوع خوردگی به بیان واکنشهای الکترو شیمیایی می پردازیم .
موقعی که قطعه فلزی مانند روی در مایع الکترو لیتی مانند اسید هیدروکلریک (HCL ) قرار گیرد اتمهای این فلز در اسید حل میشود یا به عبارتی دیگر توسط اسید خورده می شود . بدین ترتیب اتمهای فلز بصورت یون از فلز جدا شده و داخل الکترولیت میشود و در نتیجه جریان الکتریکی بین فلز و الکترولیت برقرار می گردد . در اینجا واکنش شیمیایی زیر به صورت اکسیداسیون در آند انجام میگیرد :
( واکنش آندی )
Zn Zn 2+ 2e-
( بداخل فلز ) (بداخل الکترو لیت ) (درسطح فلز)
و یا واکنش آندی در تولید مس( خالص) الکترودی از مس خام ( مس آندی )
(واکنش آندی 2+ + 2e- Cu C u
و بر عکس که واکنش زیر در آن فلز با گرفتن الکترون به صورت اتم فلز آزاد میشود ، واکنش کاتدی نامیده میشود :
(واکنش کاتدی)
Cu 2+ + 2e - Cu
(یون مس موجود
( رسوب در سطح خارجی الکترود) (الکترون از فلز) در الکترولیت)
دسته بندی | زمین شناسی |
بازدید ها | 15 |
فرمت فایل | doc |
حجم فایل | 13 کیلو بایت |
تعداد صفحات فایل | 11 |
مقدمه
سنگهای تهنشتی آواری:
سنگ های تهنشتی آواری یا تخریبی شامل سنگهای مختلفی است که دارای منشاء واحدی هستند این سنگ ها بر اثر عوامل مختلف مانند جریان آب، حرکت یخچال، و باد از محل اولیه خود حرکت کرده و هر اندازه که از مبدا خود به نقاط دورتر انتقال یافته باشند بیشتر خرد شده و گوشه ها و زوایایشان از میان رفته و مدور شده اند این قطعات خرد شده را بر حسب بزرگی و کوچی به اسامی زیر می نامند که شامل : ریگ – شن – ماسه – گل – رس می باشد.
رس:
قطر آن 0001/0 تا 005/0 میلی متر می باشد باید در نظر داشت که سنگ های آذرین بر اثر عوامل مختلف به ویژه آب بتدریچ تجزیه می شوند و در میان عناصر تشکیل دهنده آنها تنها کوارتز در مقابل عوامل خارجی بیشتر مقاومت می کند و تجزیه نمی شود ولی آن هم بر اثر عمل مکانیکی آنها به تدریج ساییده می شود و تشکیل قلوه سنگ دیگ – ماسه و غیره می دهد. فلدستاپها بتدریج بوسیله آب باران، که محتوی گاز کربنیک است تجزیه می شوند و تولید کربوناتهای محلول و سیلیکاتهای غیر محلول مطابق فرمول زیر می کنند:
سیلیکات غیر محلول، سیلیکات آلومین آبداری است که به وسیله آب حمل شده و در محلهایی که جریان آب قطع می شود و آب راکد می شود تهنشین شده و تولید خاک رس می کند بعضی از اقسام میکا کمابیش مقاومت کرده و تجزیه نمی شوند ولی بر اثر عمل مکانیکی آنها خرد می شوند سایر عناصر سنگ های آذرین سهل تر از فلوسپاتها تجزیه می شوند قسمتی از آنها در آب حل می شود و قسمتی نیز تولید سیلیکات آلومین غیر خالص را می کند و جزء رسها در می آید.
سنگهای تهنشی تخریبی به سه خانواده تقسیم می شوند: خانواده سنگ های رسی خانواده ماسه و ماسه سنگها، خانواده جو شسنگها و تهنشستهای آبرفتی.
خانواده سنگهای رسی:
خاک رس از سیلیکات آلومین آبداری که ممکن است به شکل یا به صورت ورقه های کوچک میکروسکوپی باشد تشکیل شده است و به وسیله چشم و حتی با ذره بین در آن هیچ گونه عنصری تشخیص داده نمی شود علاوه بر سیلیکات آلومین هیچ گونه عنصری تشخیص داده نمی شود علاوه بر سیلیکات آلومین محتوی مقداری سیلیس ژلاتین (sio2) و آلومین زژلاتین نیز هست.
موضوع تحقیق :
خاک رس
فهرست
مقدمه
سنگهای تهنشتی آواری
رس
خانواده سنگهای رسی
اقسام خاک رس
رس شکل پذیر
رس چرب
رس لاغر
رس نمکدار
رس چرب زا
لای
گل
سیمون یا سم
بادرفت
لاتریت
بوکسیت
آهکرس
خاک
سیاه خاک
سنگ رسی
شیت رسی
سنگ لوح
شیل یا اردوال رسی
بستر
منابع و مآخذ
دسته بندی | زمین شناسی |
بازدید ها | 22 |
فرمت فایل | doc |
حجم فایل | 29 کیلو بایت |
تعداد صفحات فایل | 16 |
شکل دهی تیتانیوم و آلیاژهای تیتانیوم:
تیتانیوم و آلیاژهای آن را با ماشین های استاندارد و با تلرانس فرم دهی فولاد ضد زنگ می توان شکل و فرم داد، ولی به علت کاه تغییرات جوش به عقب و همچنین کسب افزایش ویژگی داکتیل، که یک مزیت به شمار می رود، بخش اعظم قطعات تیتانیوم را با فرم دهی گرم می سازند و یا بصورت سرد پیش فرم داده و سپس با حرارت، سایز آن را افزایش می دهند.
در شکل دادن ورق های تیتانیوم و آلیاژهای آن باید موارد و خصوصیات زیر را در نظر گرفت:
- حساسیت به بردیگی و فرو رفتگی که باعث ترک خوردن بویژه در شکل دهی سرد می شود.
- سائیدگی و زخم سطحی بخصوص در مورد فولادهای ضد زنگ.
- توانایی انقباظی کم ( کد عیبی در لبه های پخ شده می باشد.)
- تردی و شکنندگی زیاد ناشی از حرارت بیش از حد یا جذب گاز هیدروژن و امثال ان
- توان کار محدود
- خاصیت ارتجاعی بالاتر از آلیاژهای آهنی با همان استحکانم
با این حال، با وجود محدودیت های بالا، باز هم می توان تیتانیوم و آلیاژهای آن را در بخش های پیچیده شکل داد، چون خصوصیات مکانیکی و شکل پذیری تیتانیوم و آلیاژهای آن بسیار گسترده است. برای مثال انواع تجاری آن با خلوص 240 تا 550 MPA، دارای استحکام کششی متفاوتی بوده و حداقل خمش ان ها در دمای اتاق متفاوت می باشد.و خاصیت داکتیل یا رسانایی و استحکام کششی تیتانیوم خالص (cp) به مقدار اکسیژن آن بستگی دارد.
در جدول 1، فهرستی از طرحها، ترکیبات و خصوصیات مکانیکی انتخاب شده بعضی ازآلیاژهای تیتانیوم آورده شده است.
مواد تیتانیوم:
چند نوع غیر آلیاژی وجود دارد، که اختلاف آن ها در مقدار عناصری مثل اکسیژن، نیترژن و آهن است موادی که خلوص آنها بیشتر است دارای استحکام، سختی و دمای تغییر شکل پایین تری نسبت به مواد با خلوص کمتر هستند. یکی از عوامل که باعث شده تا تیتانیوم نسبت به سایر عناصر فلزی منحصر به فرد باشد انحلال پذیری بالای عناصر مثل اکسیژن و نیتروژن درآن است. مثلا تیتانیوم در هوا و درجه حرارت بالا اکسید نمی شود. در آن، ناحیة سخت شده سطحی، شکل می گیرد. (حالت ).
چون حضور حالت ، موجب کاهش مقاومت به خستگی و رسانایی می شود. این لایه معمولا توسط ماشین کاری، سایش شیمیایی و غیره قبل از اینکه مورد کاربرد قرار گیرد برداشته می شود پر مصرف ترین آلیاژی آن، V4 – AL- Ti می باشد که حدوداً 60% کل تولیدات تیتانیوم را به خود اختصاص داده است.
مواد غیر آلیاژی تیتانیوم و ما بقی آلیاژها، هر کدام 20% تولیدات را شامل می شوند انتخاب تیتانیوم غیر آلیاژی بستگی به خصوصیات مکانیکی، سرویس دهی، هزینه ها و سایر فاکتورهای خواسته شده داردو مثلاً، از تیتانیوم تجاری خالص به خاطر مقاومتش در برابر خوردگی به خصوص در جاهایی که نیاز به استحکام بالای باشد استفاده می شود استحکام نهایی cp به خاطر تغییر ناخالصی های آن و مقدار عناصر اکسیژن و نیتروژن در آن بین 170 تا 480 MPa متغیر است. در این cpها با افزایش مقدار آهن و اکسیژن ، استحکام افزایش می یابد. آلیاژهای آنها که حاوی آلومینیوم قلع و یا زیرکونیوم هستند برای کاربردهای حرارت بالا یا برودتی ترجیح داده می شوند. آلیاژهی غنی آلفا نسبت به آلیاژهای و ، از مقاومت خزشی بالاتری برخوردار هستند. آلیاژهای باعناصر بسیار کم (ELI) دردماهای برودتیی، در دماهای برودتی، همچنان داکتیل و سخت باقی می مانند، مثل sn 5/2 – AL5-Ti.
برخلاف آلیاژهای و ،آلیاژهای توسط عملیات حرارتی مستحکم نمی شوند. معمولاً آلیاژهای را آدنیل یاتبلور مجدد می کنند. تا تنش های پسماند ناشی از کار سرد از بین برود آلیاژهای که مقدار کمی دارند، تحت عنوان آلیاژهاینزدیک طبقه بندی می شوند. و با توجه به اینکه مقدار کمی فاز دارند مثل آلیاژهای عمل می کنند. آلیاژهای حاوی یک یا چند تثبیت کننده هستند که این آلیاژها بعد از اینکه عملیات حرارتی شوند بیشتر فاز خواهند داشت که این موضوع به مقدار تثبیت کننده موجود در آلیاژ بر می گردد. آلیاژهای حاوی تثبیت کنندة بوده و مقدار فاز آنها کم تر از آلیاژهای می باشد. قابلیت سختی آنها به علت وجود فاز در هوای سرد یا آب به هنگام کوئنچ کردن قطعات ضخیم، بالا باقی می ماند ورق های آلیاژ را بیشتر از بیقه آلیاژها می توان به صورت سرد شکل داد. مثالی از آن، آلیاژ AL3،cr3-Sn3-V15-Ti است که در دمای اتاق شکل دهی می شود پس از انحلال آلیاژهای دردمای تا که فاز تا حدودی به فاز تبدیل می گردد، پیر سازی می شوند فاز حاصل در میان ذرات باقی مانده پراکنده می باشد و از نظر سختی مانند آلیاژهای پیر شده می باشد در شرایط محلول آلیاژهای رسانایی و سختی خوبی دارند و نسبتاً استحکام آنها اندک بوده و لذا شکل پذیری خوبی دارند. در این آلیاژها با افزایش دما، فاز رسوب کرده و قبل از پیرسازی یا تثبیت، قابل استفاده در دماهای بالا نیستند.
دسته بندی | زمین شناسی |
بازدید ها | 10 |
فرمت فایل | doc |
حجم فایل | 176 کیلو بایت |
تعداد صفحات فایل | 116 |
تهیه، ساخت و شناسایی پلی مرها
با آنکه واکنشهای مورد استفاده در تهیه پلی مرها معمولاً با واکنشهایی که در سنتز مولکولهای کوچک به کار می روند یکسان هستند، وزن مولکولی بالا در محصولات پلی مری و نتیجه فیزیکی اندازه و بر هم کنشهای زنجیر، باعث می شود که پلی مرها خواص ویژه خود را داشته باشند. از این رو آنها اغلب به روشهای کاربردی و شناسایی ویژه ای نیاز دارند که کاملاً متفاوت با روشهای مربوطه در مولکولهای کوچک است.
فنون تهیه و استفاده از پلی مرها
علاوه بر روشهای آزمایشی مرسوم، فنون ارائه شده زیر، گسترده ای در سنتز آزمایشگاهی پلی مرها دارند.
استفاده از حمامهای با دمای ثابت
گاهی گرم کردن مخلوط واکنشهای پلی مر شدن، در یک دوره زمانی طولانی و در یک دمای ثابت ضرورت پیدا می کند. یکی از مرسومترین راههای این کار، استفاده از حمام بخار است (شکل 2-1).
یک لوله آزمایش بزرگ ( اینچ) را تا حدود یک چهارم پر می کنند و سپس آن را تا مرحله جوشیدن گرما می دهند. این لوله گرم شده در بخارها معلق می شود و به زودی به دمای ثابت می رسد.
جدول 2-1 فهرست ناکاملی از موادی است که به عنوان حمامهای بخار به منظور کنترل دماها مورد استفاده قرار می گیرند. اگرچه بیشتر این مواد، به کار رفته اند و موثر بودن آنها مسلم شده است، ولی پایداری آنها در درازمدت، دستخوش تغییر می شود. چون برخی از این مواد در طول مدت استفاده به سوی ابر گرم شدن گرایش پیدا می کنند، توصیه می شود که دمای واقعی بخار همه روزه وارسی می شود.
حمامهای مرسوم ثابت – دما، که به روش الکتریکی گرم و کنترل می شوند، معمولاً برای دماهای پایینتر از دماهای خاص مناسب حمامهای بخار، مورد استفاده قرار می گیرند. بطریهای لیوانی و تکان دهنده ها، برای پلی مر کردن تعداد نسبتاً زیادی از نمونه ها در دمای یکنواخت در دسترس بوده و اغلب برای همه برنامه های پژوهشی وسیع ضروری هستند. بطریهای لیوانی به صورت دوازده تایی یا بیشتر و یا بطریهای آب سودای کوچک، به صورت پیرایش پذیر (قابل اصلاح)، در بازار وجود دارند.
خالص سازی واکنشگرها
اگرچه خالص سازی واکنشگرها تنها مختص شیمی پلی مر نیست، ولی برای توفیق عملی در پلی مر کردن یک امر اساسی به شمار می رود. جامدات باید تبلور مجدد شوند تا به نقطه ذوب ثابت و دقیقی برسند و مایعات باید تقطیر جزء به جزء شوند تا محصولی بدهند که در کروماتوگرافی گازی حتی الامکان تنها یک پیک بدهد. با این همه، ملاک نهایی خلوص، پلی مر شدن موفقیت آمیز است. فنون ویژه مربوطه در جای مناسب عنوان خواهند شد.
در مثالهای سنتزی، ملاحظه خواهد شد که معمولاً از یک گاز بی اثر به منظور پاکسازی ابتدایی واکنشگاه یا برای پوشش دادن یا روفتن پیوسته سیستم تهیه پلی مر استفاده می شود. علت این است که اکسیژن ممکن است مستقیماً در واکنش پلی مر شدن دخالت کند یا باعث تخریب پلی مر یا واکنش دهنده گردد. بنابراین لازم است محتوای اکسیژن گاز بی اثر مورد استفاده آن قدر پایین باشد که عملاً از این مشکلات پیشگیری شود. آرگون با درجه خلوص بالا عموماً یکی از گازهای تجارتی موجود است که دارای پایینترین محتوای اکسیژن بوده و از هوا چگالتر است؛ برای پوشش دادن واکنشها و دفع اکسیژن از سیستم یک انتخاب عالی نیز هست. البته این گاز واقعاً گران است و بنابراین اغلب برای استفاده متداول و گسترده انتخاب نمی شود. نیتروژن «از نوع مصرفی در لامپها» که برای استفاده مستقیم در بسیاری از این کاربردها تهیه و خریداری می شود، محتوی قدری اکسیژن باقیمانده (حدود ) است و تنها از تأثیر بسیار اندکی در سرعت یا جنبه های دیگر پلی مر شدن برخوردار است. در جایی که از نیتروژن به مدت طولانی و در دمای بالا برای پاکسازی یک سیستم استفاده می شود، حتی مقدار اندک اکسیژن نیز ممکن است باعث تخریب گردد. برای خارج کردن قسمت زیادی از اکسیژن باقیانده در نیتروژن تجارتی، اغلب بهتر است آن را از درون محلولی از یک آلومینیم آلکیل در حلالی با نقطه جوش بالا و یا از روی مارپیچ مسی که تا گرم شده است، عبور دهند. در روش اول، باید از یک آلومینیم آلکیل با وزن مولکولی بالا استفاده شود، زیرا برای استفاده ایمنی بیشتری دارد. بهترین انتخاب، تری آلکین آلومینیم حاصل از پیشرفت واکنش تری اتیل آلومینیم و اتیلن است که در یک توزیع پواسون از 2 تا بالای 18 ، متوسط طول آلکیل آن 12 کربن است.
دسته بندی | زمین شناسی |
بازدید ها | 20 |
فرمت فایل | doc |
حجم فایل | 145 کیلو بایت |
تعداد صفحات فایل | 52 |
مقدمه:
تکنیک RBS یکی از تکنیک های تجزیه ای می باشد که اجبار استفاده از شتاب دهنده را بنا کرده است این یک ابزار مهم برای تجزیه مواد و ایجاد یک روش قدرتمند برای رسیدن به توزیع عمقی عناصر ناخالص در ppm در نواحی سطحی کم از نمونه می باشد و بر مبنای پراکندگی را در ؟؟ می باشد. همچنین به طور اختصار RBS هم نامیده میشود. که همان Ruther ford Backscattering Spectrometry می باشد. این روش از آنالیز بر مبنای آشکارسازی (تشخیص) ذرات باردار که به صورت الاستیک بوسیله هسته های نمونه مورد آنالیز پراکنده شده اند می باشد و می تواند بوسیله y(a,a)y نشان داد.
RBS انرژی ذرات باردار (معمولاً ) را اندازه می گیرد که از نمونه به صورت معکوس توزیع یافته (هندسه پخش ) میزان کاهش انرژی در برخورد با هسته های اتمی وابسته به عدد اتمی z هر عنصر حاضر در ماده هدف می باشد. اگرچه اندازه گیری های RBS فقط هنگامی می تواند خیلی درست و واقع گرایانه باشد که فقط در جهت وارونه (عقب) باشد در حالیکه اندازه گیری های عملی و قابل استفاده معمولاً شامل پخش در جهت وارونه به خوبی جهت جلو (به سمت جلو) می باشد و توزیع با غیر مقطع عرضی را در فون (سطوح متقاطع غیر را در ؟؟ اگر نیروهای هسته ای مهم شوند آن در انرژی های بالای برخوردی اتفاق می افتد و زوایای پراکندگی بالا و عدد اتمی پایین از ماده هدف).
بنابراین اسم RBS در برخی موارد اسم درستی انتخاب نشده است و RBS برخی اوقات پراکندگی الاستیک ذره ای (Particle Elastic Scattering) نامیده می شود.
تکنیک RBS به صورت گسترده برای آنالیز لایه نزدیک سطح جامدات بکار می رود و برای تعیین پروفایل غلظت مهم می باشد. عمق عناصر سنگین در مواد سبک به عنوان تابعی از انرژی آشکار می شود. استفاده از RBS با پرتو دوترون یک سازش مفید بین RBS پروتونی و ذرات می باشد که برای لایه های ضخیم تر اغلب در هنر و باستانشناسی مورد استفاده قرار می گیرد (Barfoot 1986) با استفاده از PIXE ، آنالیز چند عنصری در محدودهی زیادی از عناصر در نواحی عمقی ممکن است، ولی تکنیک RBS یک نقطه مثبت نسبت به تکنیک در مواردی که توزیع عمقی یک یا عناصر بیشتر مطلوب میباشد، دارد ) عمق آنالیز شده (میکرومتر) برای یون های He و برای پروتونها)
روش های دیگر نمایش ناخالصی استفاده از واکنشهای هسته ای (NRA) می باشد که محدود به برخی عناصر سبک می شود.
سینماتیک:
برای تفرق (پراکندگی) در سطح نمونه تنها مکانیزم از دست دادن انرژی مومنتم که به اتم هدف منتقل شده می باشد نسبت انرژی اتمهای پرتاب شونده قبل و بعد از برخورد عامل سینماتیکی گفته می شود.
مقدار بیشتری جدایی بین انرژی های اجزای به طور معکوس توزیع یافته از اجزاء سبک نسبت به اجزاء سنگین وجود دارد. بخاطر اینکه یک مقدار قابل توجه از مغتم جابجا شده از جزء برخوردی به اتم هدف سبک هنگامیکه جرم اتم هدف افزایش پیدا می کند، مغتم کمتری به اتم هدف منتقل می شود و انرژی اجزاء به طور معکوس توزیع یافته به صورت جانبی به انرژی اجزاء برخوردی نزدیک می شود. به این معنی است که RBS برای تشخیص بین دو جزء سبک خیلی مفیدتر از تشخیص بین دو عنصر سنگین است.
RBS قدرت تفکیک جرمی خوبی برای اجزای سبک دارد اما برای اجزای و عناصر سنگین وضوح و جرمی خوبی ندارد که برای رسیدن به وضوح جرمی خوب در پایان راه حلی آورده شده است.
برای مثال زمانی که به اجزاء سبک برخورد می کند (O,N,C) یک جزء قابل توجه از انرژی برخورد کننده (پرتاب شونده) به اتم هدف منتقل می شود و انرژی ثبت شده برای رویداد توزیع یافتگی به صورت معکوس خیلی کمتر از انرژی پرتو می باشد. معمولاً ممکن است که C ، N ، p و Si را از همدیگر مجزا کرد ولو اینکه این عناصر در جرم فقط در حدود 1amV باهم تفاوت دارند. بهرحال هنگامیکه جرم اتمی که به آن برخورد وارد می شود (یعنی جرم اتمی جزء نمونه) افزایش یابد جزء کمتر و کمتری از انرژی جزء پر تاب شده در طول برخورد به جزء هدف منتقل می شود و انرژی اتم به طور معکوس توزیع یافته شده به صورت مجانب ؟؟ پرتو نزدیک می شود.
ممکن نیست که W را از Ta و یا Fe را از Ni مجزا قرار داد زمانیکه این عناصر در یک عمق مساوی از نمونه قرار داشته باشند ولو اینکه این عناصر سنگین همچنین در جرم نیز فقط در حدود 1amV تفاوت دارند یک موضوع وابسته مهم این است که He نمی تواند به صورت وارونه از اتم های H یا He در یک نمونه پراکنده شود. عناصری سبک یا سبک تر از عناصر پرتاب شده در عوض می توانند در مسیر رو به جلو با انرژی قابل توجه پراکنده شوند. بنابراین، این عناصر نمی توانند با استفاده از RBS کلاسیک کشف شوند. اگرچه با جایگذاری یک آشکارساز بطوریکه این رویدادهای پراکندگی به سمت جلو می تواند ثبت شود، این عناصر می توانند به صورت کمی بوسیله یک اصل شبیه RBS اندازه گیری شوند.
دسته بندی | زمین شناسی |
بازدید ها | 21 |
فرمت فایل | doc |
حجم فایل | 29 کیلو بایت |
تعداد صفحات فایل | 40 |
موضوع:
تقطیر
تقطیرروشی برای جداسازی مواد شیمیائی براساس تفاوت های بین آنها ازنظرعمل تبخیردرترکیب نقطه جوش مواد است. تقطیرتشکیل دهنده یک مرحله بزرگ تر شیمیائی است و بنابراین به یک عمل واحد اشاره می کند. ازنظرتجاری تقطیرکاربردهای فراوانی دارد. این امربرای جداسازی نفت خام به ترکیباتش برای کاربردهای خاص مانند : حمل و نقل ، تولیدنیرو(برق) و گرما است. آب درجهت جداسازی ناخالصی های آن تقطیرمی کنیم این ناخالصی ها شامل : نمک ازآب دریا است. هوا مورد تقطیرقرارمی گیرد که درجهت جداسازی ترکیبات آن است .
معمولاً اکسیژن ، نیتروژن و آرگون برای کاربرد درمصارف صنعتی است. هم چنین تقطیرحل شده های تخمیرشده نیزمورد استفاده قرارمی گیرد که ازگذشته های دوربرای تولید آشامیدنی های تقطیری با میزان الکل زیاد کاربرد داشته است.
مفاهیم
تاریخچه
کاربردهای تقطیر
مدل ایده ال (مطلوب) تقطیر
1-3- تقطیردسته ای(گروهی)
2-3- تقطیرمداوم
3-3- بهبودهای کلی
4- تقطیردرمقیاس آزمایشگاهی
1-4- تقطیرساده
2-4- تقطیرتکه تکه اجزاء
3-4- تقطیربخار
4-4- تقطیرخلأ
5-4- تقطیرخلأحساس به هوا
6-4- تقطیرکوتاه مدت ( مسیر)
7-4- انواع دیگر
5- تقطیرایزوتوپ ها
1-5- شکستن ایزوتوپ با فشاریک جانبه
2-5- تقطیرحرکت( گریز) فشار
6- تقطیرصنعتی
7- تقطیردرتولید موادغذائی
1-7- تقطیرآشامیدنی ها
8- منابع
9- ارتباطات خارجی
10- مجموعه
تاریخچه
اولین روش ها و مراحل تقطیرخالص برای تولید مواد خالص شیمیائی توسط شیمیدانان مسلمان عرب برای مصارف واهداف صنعتی انجام شد،مانند: جداسازی عطرهای طبیعی و تولید الکل خاص بود. اگرچه، اشکال جدید تقطیردرحدود 2میلیون سال قبل ازمیلاد مسیح توسط کیمیاگران شهربابل دربین النهرین شناخته شد.
بعد ازتقطیرتوسط کیمیاگران یونانی درقرن یکم میلادی شناخته شد و توسعه های بعدی ازتقطیردرمقیاس عظیم درپاسخ به درخواست های مشروبات الکلی اتفاق افتاد.اسکندراولین دستگاه تقطیررااختراع کرد و اولین توضیحات دقیق درمورد دستگاه تقطیرتوسط الکساندریا درقرن چهارم داده شد.
درقرن8 شیمی گران مسلمان اولین افرادی بودند که مراحل تقطیرخالص که مواد شیمیائی را کاملاً خالص کند اختراع کردند. درمیان اینها ( عربها ) جبیردرعراق در800سال پیش بودند که تعداد زیادی ازدستگاه های تقطیرومراحل آن رااختراع کردکه هنوزمورد استفاده قرارمی گیرند. به ویژه دستگاه پالشگراولین دستگاه درپاسخ که کاملاً می تواند مواد شیمیائی را خالص کند.
یک دیگ درون یک حباب شیشه ای و طراحی آن به عنوان مدلی برای دستگاه های مدرن درمقیاس بزرگ به کارمی رود. مانند : دستگاه hickman . مواد نفتی برای اولین بارتوسط شیمی گرمسلمان دیگربه نام الاراضی مورد تقطیردرقرن نهم قرارگرفت که برای تولید نفت بود ، درحالی که تقطیربخارتوسط Avicenna در اوایل قرن11 انجام شد که برای تولید مواد نفتی اصلی استفاده شد.
همانطورکه کیمیاگری به علم شیمی تکامل یافت ، مسیرها ( رگ ها ) که قرع نامیده می شد برای تقطیرمورد استفاده قرارگرفت.هم دستگاه تقطیرهم قرع ظروف شیشه ای هستند که لوله بلند که دریک نقطه درگوشه پائین مثلث که به عنوان خنک کننده هوا مورد استفاده قرارمی گیرد که منجربه چکیده شدن قطرات به سمت پائین برای جمع شدن می شود.
دسته بندی | زمین شناسی |
بازدید ها | 26 |
فرمت فایل | doc |
حجم فایل | 100 کیلو بایت |
تعداد صفحات فایل | 23 |
تعیین وزن اتمی منیزیم
تعیین وزن اتمی منیزیم منیزیم : منیزیم عنصری فلزی به رنگ سفید نقره ای است که در گروه 2 جدول تناوبی قرار دارد .این عنصر در سال 1808 توسط humphrey davy دانشمند انگلیسی کشف گردید.از الکترو لیز نمک کلرید منیزیم و همچنین از آب دریا بدست می آید. منیزیم و ترکیبات آن مدت زمان مدیدی است که شناخته شده هستند .منیزیم هشتمین عنصر از نظر فراوانی در پوسته زمین به حساب می آید .این عنصر در نهشته های عظیم در کانیهای مگنزیت ،دولومیت ودیگر کانی ها یافت می شود. این عنصر از الکترولیز کلرید منیزیم ناشی از اب های نمک دار ،چاه ها و آب دریا ها حاصل می شود . منیزیم عنصری سبک به رنگ سفید نقره ای است این عنصر به راحتی در درجه حرارت بالا می سوزد و شعله سفید رنگ وتابناکی در موقع سوختن نمایان می کند . موارد استفاده این عنصر شامل مواد محترقه و منفجره شامل بمب های آتش زا می باشد . حدود یک سوم ترکیبات الو مینیومی و آلیاژهای ضروری برای هواپیما ها و موشکها از این عنصر استفاده می شود .این عنصر دارای خاصیت جوش خوردگی بهتر از آلومینیوم می باشد که برای عناصر آلیاژی مورد استفاده قرار می گیرد . همچنین برای تولید گرافیتهای حلقه ای چدنی کاربرد دارد. همچنین این عنصر یک عامل کاهنده در تولید اورانیوم خالص و نمکهای فلزی است. هیدروکسید ،کلرید،سولفات و سیترات منیزیم در دندانپزشکی استفاده می شود . به علت اشتعال پذیری بالای این عنصر برای سوخت کوره های کارخانه ها استفاده می شود . ترکیبات آلی منیزیم نقش حیاتی در زندگی گیاهی و جانوری دارند . کلرفیل گیاهان دارای منیزیم است. به علت اشتعال پذیری بالای منیزیم موقع استفاده از این عنصر باید دقت لازم را به عمل بیاوریم. در موقع سوختن منیزیم نباید از آب استفاده کرد. روش کار : ابتدا درون یک ارلن تمیز،به مقدار کمی آب می ریزیم وسپس در حدود 15ml Hcl غلیظ به آن اضافه میکنیم (باید توجه داش که در هنگام برداشتن Hcl غلیظ از عینک ایمنی استفاده کنی) و سپس به ارلن آب اضافه کرده تا ارلن پر شود(تا وسط گردنه ارلن) . سپس یک تکه نوار منیزیم را وزن کرده،(m=0.024 gr ) آن را درون بشر انداخته و درپوش ارلن را که لوله ی شیشه ای از وسط آن می گذرد ،می گذاریم. در انتهای لوله شیشه ای یک بشر می گذاریم .در درون ارلن واکنش زیر اتفاق می افتد: 2HCl + Mg MgCl2 + H2 با پیشرفت واکنش حجم گاز H2 موجود در ارلن بیشتر شده ،با بالا رفتن فشار به سطح مایع درون ارلن فشار می اید، از لوله شیشه ای بالا آمده و درون بشر می ریزد.واکنش تا جایی پیش می رود که منیزیم به طور کامل با HCl واکنش دهد. یک دما سنج درون بشر می گذاریم تا دمای مایعی که از ارلن به بشر می ریزد بدست آید.دما را یادداشت می کنیم (T1=297.5k ) . مایع موجود درون بشر را به یک استوانه مدرج منتقل کرده تا حجم مایع بدست آید(V1=138ml ).این حجم در واقع همان حجم گاز هیدروژنی است که از واکنش منیزیم با محلول HCl تولید شده است. فشار آزمایشگاه را نیز (p1=750 mmHg ) در نظر می گیریم .شرایط استاندارد را نیز در نظر می گیریم،(T2=273 K وp2=760 mmHg ). مقادیر فوق را در فرمول زیر جایگزین کرده تا حجم گاز H2 در شرایط استاندارد بدست آید (v2 ). P1 V1 / T1 = P2 V2 / T2 750×138/297.5 = 760×V2/273 V2=124.96 ml با توجه به اینکه 1 mol از هر گازی 22.4L حجم دارد تعداد مول H2 بدست می آید: mol H2 = 0.12496L .(1mol / 22.4L) = 5.578×10-3 mol H2 از آنجایی که در فرمول واکنش ضرایب H2 وMg برابر هستند ،در نتیجه: Mol H2 = mol Mg = 5.578×10-3 با استفاده از فرمول زیر وزن اتمی منیزیم بدست می آید: M = m / n = 0.24 / 0.005528 = 43.021 محاسبه ی درصد خطا: 100 × مقدار واقعی /مقدار تجربی - مقدار واقعی=درصد خطا 24.3050-43.021/24.3050 × 100 = 77% =درصد خطا دلایل خطای آزمایش: عواملی که باعث خطا در ازمایش شده 1. مقداری از محلولی که از ارلن بالا امده در لوله باقی مانده که در اندازه گیری حجم گاز H2 محاسبه نشده.(هوای درون لوله در اندازه گیری حجم H2 لحاظ نشده). 2. بشر بر روی میز کار که از جنس سنگ است قرار داده شده بود که از نظر دما عایق نبود در نتیجه دمای محلول ما دارای خطا شده است. 3. اشکال فنی ترازویی که با آن وزن Mg را اندازه گیری کردیم.
آزمایش تیتر کردن اسید و باز
تئوری آزمایش
در روش تیتر کردن سلولی با غلظت مشخصی به محلول دیگر اضافه میشود تا واکنش شیمیایی بین دو ماده حل شده کامل گردد. محلولی که غلظت آن مشخص باشد، محلول استاندارد است. در عمل تیتر کردن ، محلول استاندارد را از یک بورت به محلولی که باید غلظت آن اندازه گرفته شود، میافزایند و این عمل تا وقتی ادامه دارد که واکنش بین محلول استاندار تیتر شونده کامل شود. پس با استفاده از حجم و غلظت محلول استاندارد و حجم محلول تیتر شونده ، غلظت محلول تیتر شونده را حساب میکنند.
وسایل لازم
* بورت 50 میلی لیتر* بالون ژوژه 100 میلی لیتری و 50 میلی لیتری* ارلن مایر 250 میلی لیتری* بشر 100 میلی لیتری* ترازوی دقیق مواد شیمیایی لازم* تیتر ازول کلریدریک اسید 0،1 نرمال* سود* اگزالیک اسید خالص* فنل فتالئین روش آزمایشبخش اول : تعیین نرمالیته سود مجهولنمونه مجهول سود (NaOH) در بالون ژوژه 100 میلی لیتری را با آب مقطر به حجم رسانده ، هم میزنیم. پس یک بورت 25 میلی لیتری را ابتدا با آب مقطر سپس با محلول سود تهیه شده شستشو میدهیم و توسط گیره به پایه متصل میکنیم. داخل بورت ، محلول سود ریخته ف محلول را در صفر تنظیم میکنیم.* در نوک بورت نباید حباب هوا وجود داشته باشد. در صورت وجود داشتن هوا در نوک بورت باید شیر بورت را کمی باز کرد تا نوک بورت از مایع پر شود.* در موقع خواندن بورت ، چشم باید در امتداد سطح مایع بوده و عدد مقابل خط زیر سطح مقعر مایع خوانده شود.حال یک ارلن مایر که پیپت 10 میلی لیتری و با کلریدریک اسید 0،1 نرمال شستشو داده ایم، 10 میلی لیتر کلریدریک اسید 0،1 نرمال می ریزیم. سپس 2 قطره فنل فتالئین اضافه میکنیم. ارلن را زیر بورت قرار داده ، با دست چپ بشر بورت را باز میکنیم تا قطره قطره محلول سود به محلول اسید اضافه شود و با دست راست ، ارلن را بهآهستگی حرکت دورانی میدهیم. طی این عمل ، محلول داخل ارلن ، رنگ ارغوانی (صورتی رنگ) میشود و این نشانگر بازی شدن محلول داخل ارلن است. افزایش سود را متوقف کرده و حجم سود مصرفی را از روی بورت میخوانیم.
دسته بندی | زمین شناسی |
بازدید ها | 22 |
فرمت فایل | doc |
حجم فایل | 210 کیلو بایت |
تعداد صفحات فایل | 27 |
تعیین مشخصات خاک (ژئوتکنیک )
مقدمه
در رشته مکانیک خاک و مهندسی پی یا ( ژئوتکنیک ) ، تعیین مشخصات خاک تعریفی از چگونگی رفتار و ویژگیهای خاک از اهمیت زیادی برخوردار است . در کارهای عمومی که غالباً با خاک سروکار داشته و مجبور به تصرف در وضعیت موجود آن هستیم ، لازم است توانایی خاک برای تحمل بارهای وارده از سوی ما و نیز قابلیت آن به عنوان یک مصالح در روبرو شدن با حالات و شرایط متفاوت مورد بررسی و ارزیابی قرار گیرد . تمام این مطالب ما را به تعریف آزمایشهایی برای تعیین خواص مکانیکی و مقاومتی خاک و نیز احیاناً ویژگیهای فیزیکی آن رهنمون می سازد کشورهای مختلف سعی کرده اند آزمایشهای لازم را بصورتی ثابت تعریف کنند تا قابل استفاده در محلهای مختلف باشد و بتوان از نتایج آن برای مقایسه و نیز انجام کارهای پژوهشی سود و نیز از خطاهای دستگاهی و ... احتراز جست . اکنون تقریباً این آزمایشها به صورت ثابتی تعیین شده اند ، اگر چه ، پیشرفت تکنیک حساسیت ، دقت و یا سرعت آنها افزایش یافته است ولی تغییرات زیادی پیدا نکرده اند . البته ممکن است برای موارد خاصی ، آزمایشهای خاصی نیز ابداع شود . به هر حال در این کتاب با توجه به نیازهای پروژه های عمرانی درگیر با خاک بهتعیین ویژگیهای مقاومتی خاک ، آزمایشهایی ذکر شده است . این آزمایشها عمدتاً آزمایشگاهی و بنابراین کوچک مقیاس بوده و برروی نمونه های کوچکی از خاک انجام شده و مشخصات لازم را تعیین می کنند . در کنار این آزمایشها ، آزمایشهای صحرایی نیز وجود دارند که در پروژه های مهم و حساس وجود آنها ناگزیر و به طور کلی نتایج اطمینان بخش تری را به ما خواهند داد .
هر چند هزینه انجام آنها قابل مقایسه با نمونه های آزمایشگاهی نیست .
در این کتاب دانشجو با این آزمایشها آشنا خواهد شد و با تمرین و انجام آنها به توانایی نسبتاً خوبی در انجام آزمایش و تحلیل نتایج آن دست خواهد یافت . البته دانشجو باید چگونگی استفاده از این نتایج را در امر طراحی نیز بیاموزد . کتب نظری مکانیک خاک و مهندسی «پی » تا حدود زیادی وی را در این امر یاری خواهند کرد .
اساس این کتاب بر محور کتابی است از Braja M.Das به نام
Soil Mechanics Laboratory Manual
که سه فصل (18.19.20) برآن افزوده شده است . ضمناً با توجه به وجود نرم افزار کامپیوتری در کتاب فوق تصمیم گرفته شد که بهمراه این کتاب در صورت تمایل نرم افزار مذکور نیز در اختیار علاقه مندان قرار گیرد .
امید است این تلاش مورد استفاده دانشجویان محترم و عزیز این مرز و بوم الهی قرار گیرد و در ارتقاء دانش آنها موثر و مفید افتد .
آزمایشهای آزمایشگاهی و تهیة گزارش
آزمایشهایی که در آزمایشگاه برروی خاک برای تعیین خواص فیزیکی آنها انجام می شود ،بخش لازمی برای طراحی و اجرای پی سازه ها ، تعیین ویژگی و نیز بهبود این خواص و کنترل مشخصات و میزان تراکم خاک محسوب می شوند . باید به خاطر داشت که خواص فیزیکی رسوبات طبیعی خاک در فاصله حتی چند صد متر یا فوت تغییرات عمدهای دارند . روابط تئوریک و تجربی اساسی و اصلی که در مکانیک خاک استفاده می شوند در کارهای عملی نیز صرفاً وقتی استفاده می شوند که پارامترهای فیزیکی مورد اشاره ای که باید در این روابط به کار روند ، در آزمایشگاه به دست آمده باشند . لذا ، اطلاع و آموختن روش انجام این آزمایشها برروی خاک در آزمایشگاه ، نقش مهمی در حرفة مهندسی ژئوتکنیک دارد .
استفاده از دستگاه ها و وسایل آزمایشگاهی
از حیث قیمت ، قیمت این دستگاه همواره متغیر بوده است . برای آنکه نتایج خوبی داشته باشیم باید این دستگاه ها به خوبی نگهداری شوند . کالیبره کردن اجزای آنها مانند ترازوها و حلقه های بارگذاری ، باید بطور مداوم کنترل شود . لازم است تمام وسایل قبل و بعد از استفاده تمیز باشند . این امر در بهتر شدن نتایج نقش با اهمیتی دارد .
ثبت اطلاعات
در هر آزمایش ، همواره عادت به ثبت اطلاعات در جدولی مناسب بلافاصله بعد از انجام آزمایش کاری لازم محسوب می شود بعضی اوقات ، دانشجو روی کاغذ با دستخط ناخوانا این اطلاعات را می نویسد ، در حالی که این کاغذ ممکن است گم شود یا به دور افکنده شود این کار ممکن است موجب آن شود که آزمایش تکرار شود و یا حتی نتایج ناصحیحی به دست آید .
تهیةگزارش
در کلاس درس بسیاری از آزمایشهایی که شرح داده می شود باید توسط گروه های کوچک(3.2 نفره ) انجام شود ولی هر گزارش باید توسط یک یک دانشجویان تهیه شود .
دسته بندی | زمین شناسی |
بازدید ها | 14 |
فرمت فایل | doc |
حجم فایل | 28 کیلو بایت |
تعداد صفحات فایل | 31 |
تصفیه آب
بررسی روش های تصفیه آب خانگی و کاربرد آنها دستگاههای تصفیه آب خانگی برای حذف یا کاهـش مواد زائد آب آشامیدنی بکار میروند. این مواد عمدتا عبارتند از : الف) سختی آب ب) کلر و ترکیبات بیماریزای کلر ج) فلزات سنگین د) آلودگی های میکربی در زیر به بررسی این پارامترها و روشهای تصفیه آن ها می پردازیم : ۱)مواد زائد آب الف) سختی آب [۱] املاح موجود در آب موجب بالا رفتن سختی آب می شوند تماس آب با ترکیبات آهکی موجود در زمین باعث ورود عوامل سختی در آب ها شده و معمولا آب های زیرزمینی از سختی زیادتری نسبت به آب های سطحی برخوردارند. سختی آب، عملا شاخص میزان فعل و انفعال آب با صابون است و برای شستشو با آب های سخت تر به صابون زیادتری نیاز است. سختی آب به مجموعه املاح کلسیم و منیزیم موجود در آب بر حسب میلی گرم در لیتر کربنات کلسیم اطلاق میشود. طبقه بندی آب ها از نظر سختی بشرح زیر میباشد : ـ آب های سبک : ۶۰-۰ میلی گرم در لیتر ـآب های با سختی متوسط : ۱۲۰-۶۰ میلی گرم در لیتر ـ آب های سخت : ۱۸۰-۱۲۰ میلی گرم در لیتر ـ آب های خیلی سخت : بیشتر از ۱۸۰ میلی گرم در لیتر ـ آب های سخت در درجه حرارت بالا در جداره کتری و دیگ های بخار رسوبات کربنات کلسیم ایجاد میکند. مطالعات اخیر نشان داده که مصرف آب های سخت تر بعلت وجود منیزیم و کلسیم مرگ های ناگهانی ناشی از امراض قلبی و عروقی را به شدت کاهش میدهد. در حال حاضر هیچگونه رابطه ای میان پیدایش سنگ کلیه و سختی آب گزارش نشده است. علاوه بر این وجود کلسیم و منیزیم در آبهای آشامیدنی سخت مانع جذب فلزات سنگین نظیر سرب، کادمیوم، روی و مس و رسوب آنها در استخوانها می شود. در عین حال در نقاطی از روسیه که از آب های نسبتا سخت استفاده می کنند به مواردی از پیدایش سنگ در مجاری ادرار برخورده اند. این موضوع تقریبا در آب های با سختی ۵۰۰ میلی گرم در لیتر کربنات کلسیم به اثبات رسیده است. از سوی دیگر در نقاطی که از آب های نرم تر استفاده می شود، به فشار خون، وجود چربی و کلسترول در خون برخورده اند که هر دوی این عوامل میتواند در مرگ های ناگهانی بسیار مؤثر باشد. به طور کلی میتوان گفت که در نقاطی که آب سخت مصرف می شود امراض قلبی کمتر از نقاطی است که ساکنین آنها آب های سبک تر مصرف می کنند. به علاوه بروز سکته های قلبی در نقاط با آب های سخت تر به مراتب کم تر از نقاط با آب های سبک تر است . ب) کلـر [۲] برای میکرب زدایی، در تصفیه خانه های شهری کلر به آب افزوده میشود کلر و ترکیبات آن برای ضدعفونی آب آشامیدنی در تصفیه خانه ها به آب اضافه میگردد. در سالهای اخیر تحقیقات بعمل آمده نشان داده اند که مواد آلی موجود در آب با کلر ترکیب شده و ایجاد تری هالومتان ها، کلرات و سایر ترکیبات جانبی مضر و سمی می نمایند که باعث بروز انواع بیماریهای صعب العلاج در انسان میگردند. ج) فلزات سنگین [۳] فلزات سنگین از طریق نفوذ پساب صنعتی در آب آشامیدنی به انسان منتقل میشود فلزات سنگین با توجه به توسعه شهرنشینی و صنایع که منجر به افزایش میزان فاضلاب و پساب تولید گردیده است، عمدتا از طریق دفع نادرست و غیربهداشتی فاضلاب شهری و پساب صنعتی وارد محیط زیست می گردد. مرگ و میرهای آبزیان در اثر تخلیه پساب های محتوی فلزات سنگین در دنیا و ایران بی سابقه نیست. سبزیجات اطراف تهران نیز که با فاضلاب آبیاری میشود از این آلودگی ها بی بهره نمیباشد. فلزات سنگین شامل سرب، جیوه، روی، نیکل، کرم، کادمیوم و غیره میباشد. وجود فلزات سنگین در غلظت بیش از استاندارد در آب شرب باعث عوارض مختلف نظیر مسمومیت، حساسیت شدید، ضایعات کروموزومی، عقب افتادگی ذهنی، فراموشی، پارکینسن، سنگ کلیه، نرمی استخوان و انواع سرطان منجمله سرطان پروستات میگردد. یکی از کارشناسان محیط زیست، آلودگی محیط مخصوصا آب با فلزات سنگین را بعنوان بزرگترین گناهی که بشر در طبیعت انجام میدهد ارزیابی نموده است.. د) میکرواورگانیزم های بیماری زا میکربها از طریق نفوذ فاضلاب انسانی در آب آشامیدنی به انسان منتقل می شوند امراض مختلفی بوسیله آب به انسان منتقل می شوند. از جمله این امراض می توان وبا، حصبه، اسهال میکربی و خونی، هپاتیت، سل، دیفتری، انگلهای خونی و کبدی را نام برد. عوامل بروز این بیماریها که شامل تک یاخته ها، ویروس ها، باکتری ها، کرم ها و انگلها می باشند، از طریق نفوذ فاضلاب در آب آشامیدنی به انسان منتقل می شود. بیماری های ناشی از آب آلوده سالانه نزدیک به یک میلیارد انسان را در روی کره زمین مبتلا می کند و باعث مرگ حدود ۱۰ میلیون نفر می شود. ۲) منشاء آب ▪ آب لـوله کشی آب تهران که از سدهای کرج، لار و لتیان تامین می گردد دارای کیفیت بالائی بوده و از
دسته بندی | زمین شناسی |
بازدید ها | 12 |
فرمت فایل | doc |
حجم فایل | 321 کیلو بایت |
تعداد صفحات فایل | 13 |
تجزیه فوتوشیمیایی محلولهای محتوی سولفانیلیک اسید با استفاده از تابش مستقیم نور فرابنفش
چکیده
در این تحقیق بر روی تجزیه فوتوشیمیایی سولفانیلیک اسید در محلولهای مائی کار شده است. این ماده به مقادیر قابل توجهی در صنعت بکار رفته و درصدی از آن وارد پساب میشود. یک واکنشگاه دو جداره همراه با جریان چرخشی و با تابش بدون واسطه نور فرا بنفش استفاده و اطلاعات تجربی پس از تنظیم pH و دمای محلول حاصل شده است. پیشرفت واکنش با اندازهگیری غلظت توسط دستگاه اسپکتروفوتومتر فرا بنفش- مرئی تعقیب گردیده و اثر زمان تابش نیز مورد بررسی قرار گرفته است. نتایج نشان میدهد که در pH حدود 4 بیشترین میزان تجزیه حاصل میشود. این مقدار در حدود pH محلول بازای غلظت اولیه ppm 10 میباشد و یک زمان 30 دقیقهای برای محو کامل این ماده کافی است. کاهش قابل ملاحظه معیار COD و محو نوارهای مربوط به پیوندهای دو گانه کربن- کربن در طیف FT-IR موید آنست که معدنی شدن ماده آلی (تبدیل حلقه بنزنی به دی اکسید کربن و آب، تبدیل گروه سولفیت به سولفات و تبدیل گروه آمین به نیترات) انجام گرفته و این روش برای کاربرد صنعتی مفید است.
واژههای کلیدی: تجزیه فوتوشیمیایی، واکنشگاه با جریان چرخشی، سولفانیلیک اسید، COD
Photochemical Decomposition of Solutions Containing Sulfanilic Acid Using Direct UV Irradiation
J. Saen and A. Amisama
Department of Chemistry, University of Bu Ali, Hamadan
Abstract
This investigation is concerned with photochemical degradation of sulfanilic acid. This substance is largely used in textile and dye industries, a part of which is discharged in the wastewater. A jacketed circulating reactor, equipped with direct imposed irradiation has been designed and used in this work. The concentrations of substrate have been determined using an ultraviolet-visible spectrophotometer. The experimental data has been obtained for each run after adjustment of pH and temperature of operation. The irradiation time has also been controlled. There is an optimal pH≈4 (close to substrate concentration of 10 ppm) for which the maximum conversion is obtained. A 30 min irradiation time, for example, was sufficient for complete removal of substrate with 10 ppm initial concentration. The significant decrease of COD and the significant removal of the carbon – carbon double bonds observed in the FT-IR spectrum indicate that the degradation is consistent with mineralizing of the organic substrate (conversion of benzene ring to carbon dioxide and water, conversion of sulfite group to sulfate and conversion of amine group to nitrate). The method of degradation of sulfanilic acid could therefore have useful industrial applications.
Keywords: Photochemical decomposition, Circulating reactor, Sulfanilic acid, COD
مقدمه
تصفیه فوتوشیمیایی پسابها روشی موثر برای از بین بردن آلودگیهاست. بهتازگی توجه ویژهای به آلایندههای آروماتیک و آلیفاتیک محلول در پسابها معطوف شده است. در این رابطه، فرآیندهای اکسیداسیون پیشرفته (AOPs)، روشهایی برای تصفیه آب هستند که سبب معدنی شدن آلایندههای آلی بوسیله عوامل اکسیدکننده قوی میگردند (1-3). یکی از سودمندترین این روشها که در تصفیه شیمیایی، آلودگی ثانوی ایجاد نمیکند، تابش نورفرا بنفش به محلول حاوی مواد آلاینده است. استفاده از اکسید کنندههای موثری نظیر آب اکسیژنه و اوزون نیز در این فرآیند رایج بوده است، بعنوان مثال کاربرد این روش برای تصفیه پساب داروسازی و باستناد معیار COD، توسط هر دو فرآیند H2O2/UV و O3/UV انجام شده است (4).
سولفانیلیک اسید در تهیه رنگها، در صنایع رنگرزی و بعنوان یک ماده حد واسط در تهیه تعدادی از رنگهای آزو مصرف میشود. همچنین در تولید برخی آفتکشها و مواد ساختمانی نیز بکار میرود. این ماده بصورت پودر یا کریستال به رنگ سفید، زرد یا خاکستری مایل به سفید وجود دارد. فرمول ساختمانی سولفانیلیک اسید در شکل یک ارایه شده است. سولفانیلیک اسید در آب سرد، الکل و اتر به مقدار کم حل میشود. اما در آب گرم و اسید کلریدریک غلیظ محلول است. حلالیت این ماده در آب سرد، یک گرم در هر 100 میلی لیتر آب است.
شکل1: فرمول گسترده سولفانیلیک اسید
سولفانیلیک اسید جزو ترکیبات نسبتاً خطرناک است و برای کار با آن احتیاطهای لازم بکار میرود. استنشاق این ترکیب موجب تحریک و سوزش مجاری تنفسی و سپس سرفه و عطسه میشود. وجود این ماده در دستگاه گوارش، باعث تهوع و اختلال در کار معده میشود. میزان سمیت این ترکیب برابر LD50=12300 mg/kg است (5).
این ماده دارای مقاومت زیاد زیست هضمی درون آب و زمین بوده و تاکنون مقالهای در متون راجع به تجزیه فوتوشیمیایی این ترکیب, بروشی مشابه این کار گزارش نشده است.
در این کار جهت تحقیق در زمینه تجزیه فوتوشیمیایی این ماده, یک واکنشگاه دوجداره مجهز به جریان چرخشی (circulating stream) همراه با لامپ فرا بنفش بکار برده شده است. تابش نور فرا بنقش بدون واسطه به محلول انجام میشود. با استفاده از این واکنشگاه تاثیر غلظت اولیه، pH و دما مورد بررسی و تحلیل قرار میگیرند. نتایج آزمایشگاهی بوسیله دادههای بدست آمده از طیفسنج فرابنفش- مرئی، اعمال روش استاندارد اندازهگیری مقدار اکسیژن مورد نیاز برای تجزیه مواد آلی (Chemical Oxygen Demand, COD) (6) و طیف مادون قرمز (FT-IR) حاصل شده است.
کارهای تجربی
الف- وسایل و مواد
واکنشگاه فوتوشیمیایی استفاده شده از جنس شیشه پیرکس و دوجداره میباشد. بدنه اصلی آن مخروطی شکل وعمودی است که دهانه پهن آن در بالا و دهانه باریک در پایین (محل ورود جریان چرخشی) قرار دارند. تمام محلول در معرض لامپ فرابنفش قرار گرفته بدون اینکه فضای مردهای بوجود آید. در صورت استفاده از کاتالیزور، این واکنشگاه مشابه یک واکنشگاه فورانی (spouted reactor) (7) عمل مینماید که در آن قسمت اعظم ذرات جامد کاتالیزور در فضای واکنشگاه بطور معلق باقی میمانند.
گنجایش واکنشگاه بکار رفته در این کار حدود یک لیتر است. یک لامپ فرابنفش (از نوع جیوه با تابش در محدوده UV-A) طول موج با توان 400 وات به صورت عمودی در محلول داخل واکنشگاه قرار گرفته و از بالا توسط سیم و گیره نگهداری شده است. واکنشگاه مجهز به یک جریان چرخشی است که از بالای واکنشگاه درون یک مجرا خارج و به ورودی یک پمپ که جریان را به پایین واکنشگاه ارسال میکند، جاری میشود. جریان چرخشی موجب همزدن و یکنواخت شدن محیط گردیده و امکان تماس با لامپ را برای همه ذرات محلول فراهم مینماید. شدت جریان چرخشی با تنظیم یک شیر که در خروجی پمپ قرار دارد، تنظیم میگردد. بمنظور از بین بردن اثر غلظت اکسیژن در روند اکسیدآسیون، از یک پمپ هوا دهی استفاده شده است که جریان هوا را توسط لوله ای به قطر تقریبی 5 میلیمتر به قسمت پایین واکنشگاه و زیر لامپ هدایت میکند. تغییر در شدت جریان هوا در محدوده شرایط بکار موجب تغییر قابل ملاحظهای در پیشرفت واکنش نشده است، لیکن قطع جریان هوا باعث کاهش در میزان پیشرفت واکنش میشود. از طرفی افزایش زیاد شدت جریان هوا باعث اغتشاش در هیدرودینامیک و حرکت محلول در واکنشگاه میشود. دلیل این امر افزایش مقدار هوا در محلول داخل واکنشگاه و در محیط پمپ و سپس دو فازی شدن سیال میشود. تاثیر افزایش اکسیژن در افزایش واکنش تجزیه فوتوشیمیایی در موارد مختلف از جمله تجزیه فوتوشیمیائی ماده 4-ترشیو اکتیل فنل در محلول آبی گزارش شده است (8). جداره دوم واکنشگاه محتوی آب جاری است که دمای محلول موجود در واکنشگاه را در مقدار مطلوب تنظیم مینماید.
سولفانیلیک اسید با خلوص بیش از 99 درصد محصول شرکت مرک برای تهیه محلولهای مختلف بکار رفته است. جهت تنظیم pH از محلولهای یک مولار اسید کلریدریک و سود سوزآور استفاده شده است.
دسته بندی | زمین شناسی |
بازدید ها | 17 |
فرمت فایل | doc |
حجم فایل | 179 کیلو بایت |
تعداد صفحات فایل | 113 |
تاریخچه نفت:
روغن معدنی یا نفت که به انگلیسی آن را پترولیوم (Petroleum) و به فرانسه پترول (Petrol) می گویند. از دو کلمه لاتین پتروس و اولئوم یعنی روغن سنگ ترکیب شده است. در زبان اوستائی کلمه (نپتا) به معنی روغن معدنی است که کلدانیها و عربها آن را از فارسی گرفته و نفت خوانده اند ولی دوتن از مستشرقین غربی به نامهای پرفسورهرتزفلد(Hertz fled) وپرفسوربیلی(Bailey) معتقدند که کلمه نفت از فعل "ناب" فارسی به معنی ضد رطوبت گرفته شده است.
مواد نفتی از قدیم شناخته شده و از ابتدای شناسائی تا به امروز قدم به قدم براهمیت آن افزوده گردیده است. تاریخ هردوت که حدود 450 سال قبل از میلاد مسیح نوشته شده نشان می دهد که از نفت و مشتقات آن از چهار هزار سال پیش از میلاد مسیح استفاده می شده است و همچنین اسناد تاریخی گویای این واقعیت است که دو هزار سال پیش در اروپا بخصوص جزیره سیسیل مردم با نفتی که از سطح زمین بالا آمده و به صورت چشمه ای کوچک در می آمده آشنائی کامل داشته و از آن استفاده می کرده اند.
از اواسط قرن نوزدهم میلادی که اولین کاوشهای علمی برای دست یابی به نفت آغاز شد تا به امروز این ماده انرژی زا و سیال سرمنشاء دگرگونیهای بسیاری در زندگی بشر گردیده که همگی آنها قابل تعمق و بررسی می باشند.
نفت از یک طرف جهش برق آسای صنعت و تکنولوژی راموجب گردید و از طرف دیگرمحور بسیاری از برخوردها و تصادمات بین المللی و تصمیم گیریهای سیاسی قرار گرفت. سیاستمداران با توجه به نقش ارزنده نفت و نیاز مبرمی که به این ماده حیاتی دارند مهمترین نقشهای اقتصاری خود را بر پایه غارت و چپاول منابع کشورهای صاحب نفت قرار داده اند. آنها به خوبی می دانند که هر چه منابع نفتی دنیا را بیشتر در اختیار داشته باشند از یک طرف کشورهای محتاج به نفت را تحت سلطه خود داشته باشند از طرف دیگر صنایع سنگین شان را تغذیه کرده و به سرعت بازارهای جهانی را به خود اختصاص می دهند. بدین ترتیب به منابع نفتی کشورهای غیر صنعتی صاحب نفت توسط نفت خواران جهانی استثماری را جان بخشیده و جایگزین شیوه های قبلی زور گویان تاریخ گشته است.
..... و اما در ایران
در نگرشی به تاریخ تحولات نفتی در ایران می بینیم از زمانیکه در سال 1280 شمسی اولین امتیاز استخراج منابع نفتی توسط مظفرالدین شاه قاجار به یک انگلیسی بنام ویلیام دارسی داده شد نفت طلای سیاه بلای ایران و سرمنشاء تمامی نگون بختی ها گردید. از آن پس بود که نفت و مسائل مربوط به آن ترجیع بند کلیه تغییرات و نابسامانیها گردید.
براساس این قرارداد که مطالعه متونش چیزی جز لعن و نفرین بر جا نمی گذارد ویلیام دارسی انگلیسی متعهد گردید در مقابل بهره برداری از منابع نفتی جنوب ایران سالیانه فقط شانزده درصد به عنوان حق الامتیاز از منابع حاصله به دولت ایران بپردازند.تلاش دارسی پس از هفت سال بالاخره در سال 1287 در مسجد سلیمان به ثمر رسیده و چاهی که در این ناحیه حفر شده بود به نفت برخورد.
به دنبال این موفقیت ناگهان انگلیس روی کار آمده و بر امتیاز دارسی چیره شد و تمام امور را بدست گرفت بالاخره در سال 1330 بدنبال مبارزه ای سخت و طولانی و در اثر مجاهدتهای رهبران مذهبی و سیاسی وقت و حمایت بی دریغ مردم از آنان نفت ایران ملی شد.
کاشف نفت:
مصرف نفت در گذشته به علت عدم دسترسی به این ماده حیاتی اختصاص به یک نوع مصارف جزئی داشت یعنی در نقاطی که نفت به صورت خود جوش یا حفریت ابتدائی بدست می آمد در حد همان منطقه و در مصارفی کم اثر خلاصه می شد. اما با روی کار آمدن حفاری های علمی مصرف نفت بالا گرفت و با بالا رفتن مصرف ارزشهای
آن هم بیشتر شناخته شد.
بهمین خاطر اولین عملیات حفاری را که در سال 1859 صورت گرفت باید بعنوان نقطه عطف در تاریخ صنعت نفت بحساب آورد.
منشاء نفت و تشکیل مخازن نفتی:
می دانیم که سنگهای متشکله پوسته زمین را دو دسته بزرگ تشکیل می دهند.یکی از سنگهای آتش فشانی که به صورت گداخته ازاعماق زمین خارج شده و پس از سرد شدن به صورت فعلی باقی مانده و دیگری سنگهای رسوبی که توسط آب باران و جریان رودخانه ها به داخل دریاها رانده شده و طی سالهای زیاد طبقه طبقه روی هم انباشته و بر اثر فشار طبقات متراکم گشته اند. امروزه اکثر دانشمندان معتقدند که نفت باقیمانده حیوانات و نباتاتی است ذره بینی با اسم "پلانگتون" که اجساد آنها در لابلای رسوبات گفته شده باقیمانده و سپس بر اثر فشار و حرارت و فعل و انغعالات شیمیائی بصورت نفت تغییر یافته و میان خلل و فرج برخی از لایه های زمین محبوس مانده اند.
نفت خام از ترکیبات بیشمار هیدروژن و کربن بوجود آمده که معمولا" هیدروکربن نامیده می شود. در ترکیبات نفت خام مقادیر بسیار کمی از عناصر دیگر نیز وجود دارند که ناخالصی آنرا تشکیل می دهند.این هیدروکربورها بنابر نسبت ترکیب کربن و هیدروژن دارای خواص متفاوت بوده و از لحاظ رنگ و شکل,سبکی یا سنگینی با یکدیگر متفاوت هستند. بعضی خیلی سبک بوده به صورت گاز می باشند و برخی مایع و پاره ای کاملا" جامد هستند مانند آسفالت و قیر. بنابراین هیدروکربورها بر حسب شرایط اولیه در هر نقطه از زمین به صورتهای مختلفی یافت می شود. نفت خام که معمولا" مقداری آب شور و گاز بهمراه دارد در حفره های بسیار ریز قسمتهای مناسبی از قشر زمین که
اصطلاحا" آنها را تله های نفت گیر (Oil Traps) مینامند در طول سالیان دراز انبار شده
اند.
چگونگی تشکیل و منشاء بسیاری از مواد معدنی منجمله نفت بوسیله آزمایشهای شیمیایی و ذره بینی معلوم می گردد. مثلا" با آزمایش ذره بینی زغال سنگ و تحقیق در چگونگی تشکیل لایه های مجاور معدنی آن معلوم می شود که منشاء زغال سنگ درختهایی است که در سواحل دریاهای قدیم می روئیدند و سپس در زیر لایه های متعدد زمین مدفون گشته و پس از گذشت زمان بصورت رگه های زغال سنگ درآمده اند. اما طرز تشکیل نفت را نمی توان با آزمایشهای ذره بینی و یا آزمایش سنگی که در آن جمع شده معلوم ساخت زیرا نفت مایعی روان که از نقطه ای به نقطه دیگر جریان یافته و در نتیجه ممکن است در جایی غیر از محلی که بوجود آمده است جمع گردد.
نفت بصورت دریاچه یا رود در انبار زیرزمینی قرار نگرفته بلکه در بین قسمتی از منافذ ریز و خلل و فرج لایه های مخصوص زمین یافت می شود و بقیه فضای این خلل و فرج را آب گرفته است. لایه هایی که نفت در آن جا گرفته بیشتر سنگ های آهکی و منفذدار و متخلخل است.
در این لایه های منفذدار آب و نفت و گاز با هم جای گرفته اند, منتها به ترتیب وزن مخصوص آنها, آب که از همه سنگین تر است در زیر نفت و گاز در بالای آن.
هجرت نفت:
بطور کلی می توان نفت و گاز به صورت قطرات یا حبابهای بسیار کوچکی تشکیل یافته و قسمتی از خلل و فرج لایه ای که در آنجا بوجود آمده اشغال می کند. قسمت دیگر این خلل و فرج را معمولا" آب نمک دریا که در آنجاگیر افتاده است می گیرد. لایه های رسوبی را که قطرات نفت در آنجا بوجود می آید اصطلاحا" مادر سنگ یا لایه نفت زا می گویند. قطرات نفت به ندرت در همان محل و لایه ای که تشکیل یافته می مانند,بلکه براثر عواملی از آنجا حرکت کرده و در لایه دیگری بنام مخزن جمع می شوند این حرکت و تغییر محل را در اصطلاحا" هجرت نفت می گویند.
هجرت نفت شامل دو مرحله جداگانه است:
یک حرکت نفت آب و گاز از لایه اصلی یا مادر سنگ مخزن که آن را هجرت نخستین گویند و دیگر حرکت آن درون سنگ مخزن که در نتیجه جدا شدن گاز و نفت و آب و قرار گرفتن آنها بصورت وزن مخصوص صورت می گیرد, این را هجرت دوم می نامند. طی این مرحله است که در سنگهای مخصوصی بنام نفت گیر به دام می افتد و از همین جاست که نفت استخراج می شود. البته حرکت یا هجرت نفت به کندی صورت می پذیرد و سرعت آن معادل سی تا شصت سانتی متر در سال است و اینجا معلوم می گردد که میلیونها سال گذشته تا منابع امروزی نفت در اعماق زمین تشکیل یابد.
ترکیبات نفت خام:
قسمت اعظم نفت خام از هیدروکربنهایی تشکیل شده است که عموما" از مقادیر کمی اکسیژن،گوگرد،ازت،وانادیوم و غیره در آن یافت می شود. عملیات فیزیکی در پالایش نفت مانند تقطیر تابع خواص هیدروکربنهای موجود آن و عملیات شیمیایی مانند تصفیه و گوگرد،ازت و غیره می باشد.
انواع گوناگون هیدروکربنهای نفت خام را در سری های مختلف می توان طبقه بندی نمود که از آن جمله مهمترین آنها پارافین ها،نفتین ها،آروماتیک هاو الفین ها می باشند.
پارافین ها:
اتمهای کربن با اتصال به اتمهای هیدروژن در طول یک خط ساختمان زنجیری پارافینهای نرمال را تشکیل می دهند ساده ترین پارافین که هیدروکربنی بسیار سبک است متان(CH4) نام دارد. پارافین بعدی در این سری اتان (C2H6) می باشد. متان و اتان از آنجائیکه در شرایط معمولی مایع نمی شوند به گاز خشک معروفند. مولکولهای بعدی این سری پروپان(C3H8) و بوتان(C4H10) می باشد اگرچه در شرایط متعارفی بصورت گاز هستند ولی به راحتی مایع شده و در مخلوط های مناسب به عنوان گاز مایع مصرف می شوند. مولکول بعدی که اولین پارافین مایع در شرایط متعارفی است پنتان(C5H12) نام دارد. پارافینهای نرمال می توانند از متان شروع شده و به پلیمرهایی شامل هزاران کربن در طول یک زنجیر ساده خطی ختم می شوند.
ایزوپارافین ها(ISO-ParaffinS):
ایزومرهای پارافین های نرمال هستند که در آن هر اتم کربن می توانند به یک و یا چهار اتم کربن دیگر بپیوندد.در پارافین ها با افزایش اتمهای کربن نقطه جوش بالا می رود ولی عموما" در تعداد مساوی کربن ایزوپارافین نسبت به پارافینها دارای نقطه جوش و ذوب پائین تر و عدداکتان بالاتر هستند فرمول کلی پارافینها CnH2n+2 می باشند که در آن n برابر تعداد کربن است.
نفتین ها:
نفتین ها شکل دیگری از هیدروکربنهای پارافین هستند که تقریبا" در همه انواع نفت خام وجود دارند. در این سری کربنها با پیوند با هم تشکیل یک حلقه بسته می دهند به این دلیل گاهی هم آنها را سیکلوپارافین (Cyclo-Paraffin) می نامند. ساده ترین نوع اشباع شده این سری سیکلوپروپان می باشد که در آن سه اتم کربن و شش اتم هیدروژن تشکیل مثلث را داده اند.
دسته بندی | زمین شناسی |
بازدید ها | 20 |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 7 |
ماده وخواص آن
فعالیتهای نظری در زمینه علوم و فلسفه در عهدباستان، بیشتر در سه کشور هند، چین و یونان باستان چشمگیر بود. در نوشته های فلاسفه هند در متن سانسکریتی و داس (vedas) کتاب مقدس هندوها، آمده است که هندیان از حدود 1000 سال (ق . م) معتقد بودند که جهان از تعداد معینی مواد ساده یعنی خاک، آب، آتش، فضا و نور به وجود آمده است.تالس آب را منشا تشکیل همه اشیای جهان می پنداشت که آب قسمت عمده زمین را تشکیل می دهد و بنا به نر وی بر اثر سردوجامد شدن به خاک وبر اثر گرم شدن وتبخیر به هوا منتقل می شودهراکلیتوس فیلسوف دیگر یونانی، معتقد بود که آتش ماده المواد است زیرا وی آتش را مظهری از نهاد موجودات جهان هستی می پنداشت. مثلاً معتقد بودکه می توان فرض کرد که همه چیز در جهان مانند آتش به وجود می آید وبه تدریج رشدمی کند و بارورمی شود و پس از گذشت زمانی چند، روز به زول می گذارد و خاموش می شود.
امپدولکس، پزشک و فیلسوف یونانی و یکی از معاصران آناکساگوراس، شاگرد فیثاغورث، ازاهای «اگریژانت» بود. او به این باور بودکه نه تنها آب هوا و آتش به تنهایی نمی توانند به وجودآورنده اشیای جهان باشند بلکه باید هر سه آنها با هم در نظر گرفت وعنصر دیگری یعنی خاک را نیز به آها افزود. زیرا وی می پنداشت که مثلا موجودی مانند چوب،چون در حالت طبیعی جامد است، پس دارای مقداری خاک است. چون می سوزد پس دارای مقداری آتش است، چون سوختن بخارهایی ازآن خارج می شود پس دارای مقداری هوا است. و چون با سرد شدن، آن بخارها به آب تبدیل می شوند پس دارای مقداری آب است. این چهار عنصر به عناصر چهارگانه امپدوکلس شهرت یافت. در هر حال این عناصر خاک رادر زمینع آب رادر منابع آبی و هوا را در جو وآتش را در شعله به وجود می آورند.
نظریه افلاطون درباره عنصرها: به عقیده ی وی، چون این چند وجیها قابل جداشدن و تبدیل به سطحهای مثلثی اند و این مثلثها رابا آرایش های مجدد دلخواه، می توان به هر شکل موردنظر کنار یکدیگر قرار داد. می توان اساس تشکیل اشیای جهان را از این چهارعنصر دانست.
نظریه ارسطو: ارسطو معتقد بود که ماده المواد تغییر ناپذیر و مقدار آن همواره ثابت و منشأ همه مواد واشیای جهان است.
آغازشیمی آلی نو:
اگرچه بسیاری از مواد آلی از زمان های بسیار قدیم شناخته شده بودندو مورد استفاده قرار می گرفتند. اما پژوهش درزمینه های ساختار، تهیه، دسته بندی و بررسی خواص آنها به صورت شاخه مشخصی از علم شیمی، از قرن نوزدهم آغاز شد. در سال 1780 بدگمان تفاوت مواد آلی ومعدنی رابیان داشت و به سلسیوس از شیمی آلی درمفهوم زیست شیمی امروزی بحث کرد.
پیدایی نظریه ظرفیت، ساختار مواد الی: به تدریج که بر تعداد ترکیب های شیمیایی افزوده می شد و فرمول آنها با دقت بیشتری معین می شد، دانشمندان پی بردند که فرمول بسیاری از مواد با یکدیگر مشابهت دارند.
دوماً، دراین زمینه معتقد بود که نوع اتم یا رادیکالی درهر ترکیب تاثیر چندانی درخوص آن ندارد. مثلاً اسید استیک واسید کربنیک مشابه یکدیگرند، اما فرانکلند با این اندیشه موافق نبود، زیرا دریافته بودکه مثلاً ارسینک در ترکیبهای آلی تنها با سه گروه می تواند ترکیب شود، در صورتی که می تواند با پنج اتم کله پیوند برقرار کند. هر یک از اتم ها با تعداد مشخصی اتم دیگر ترکیب می شوند.
مدلهاو نظریه های اتمی
درسال 1901 نخستین بار تامسون، مدل هندوانه مانندی رابرای اتم پیشنهاد می کرد که بر آن اساس، اتم را که یکنواختی از بار مثبت درنظر گرفت والکترونها به تعدادی که این بار مثبت راخنثی کنند در داخل آن پراکنده اند.
را درفورد سال 1911 بر اساس آزمایش معروف خود (بمباران ورقه های نازک فلزی توسط ذره های شمسی مانند را برای اتم پیشنهاد کرد وتا اندازه ای اساس درستی برای ساختار اتم بنا نهاده بود هرچند که این مدل نیز در بسیاری از موارد، از جمله طیف نشری اتم هیدروژن نارسایی داشت).
نظریه ی الکترونی ظرفیت- پیوندهای شیمیایی:
در نظریه های قدیمی ظرفیت، تفاوتی بین پیوندها مثلاً در CL2 ودر Nacl در نظر نمی گرفتند، مواد، تفاوت ماهیت پیوند بین اتمها دران ها مورد توجه دانشمندان قراگرفت هایتلر ولاندن درسال 1927 نظریه پیوند کوولانسی لویس- لانگمویر رابه صورت تازه ای به نام نظریه پیوند ظرفیت، بر اساس موجی اتم درمورد سیستمهای ساده ارائه دادند که توسط کولسون به مولکولهای پیچیده تر تعمیم داده اند.
دسته بندی | زمین شناسی |
بازدید ها | 16 |
فرمت فایل | doc |
حجم فایل | 72 کیلو بایت |
تعداد صفحات فایل | 62 |
1- تاریخچه رزین های تعویض یونی
رزین های تعویض یونی ذرات جامدی هستند که می توانند یون های نامطلوب در محلول را با همان مقدار اکی والان از یون مطلوب با بار الکتریکی مشابه جایگزین کنند.
در سال 1850 یک خاک شناس انگلیسی متوجه شد که محلول سولفات آمونیمی که به عنوان کود شیمیایی بکار می رود، در اثر عبور از لایه های ستونی از خاک، آمونیم خود را از دست می دهد بگونه ای که در محلول خروجی از ستون خاک، سولفات کلسیم در محلول ظاهر می شود.
این یافته توسط دیگران پیگیری شد و متوجه شدند که سیلیکات آلومینیوم موجود در خاک قادر به تعویض یونی می باشد. این نتیجه گیری با تهیه ژل سیلیکات آلومینیوم از ترکیب محلول و سولفات آلومینیم و سیلیکات سدیم به اثبات رسید. بنابراین اولین رزین مصنوعی که ساخته شد سیلیکات آلومینیوم بود.
به رزین های معدنی، زئولیت می گویند و در طبیعت سنگهای یافت می شوند که می توانند کار زئولیت های سنتزی را انجام دهند. این مواد، یون های سختی آور آب ( کلسیم و منیزیم) را حذف می کردند و بجای آن یون سدیم آزاد می کردند از اینرو به زئولیت های سدیمی مشهور شدند که استفاده از آن در تصفیه آب مزایای زیادی داشت چون احتیاج به استفاده از مواد شیمیایی نبود و اثرات جانبی هم نداشتند. اما زئولیت های سدیمی دارای محدودیتهایی بودند. این زئولیت ها می توانستند فقط سدیم را جایگزین کلسیم و منیزیم محلول در آب نمایند و آنیونها بدون تغییر باقی می ماندند. از این رو آب تصفیه شده با زئولیت های سدیمی به همان اندازه آب خام، قلیاییت، سولفات، کلراید و سیلیکاتت دارند.
واضح است که چنین آبی برای صنایع مطلوب نیست. مثلاً بی کربنات سدیم محلول در آب می تواند مشکلاتی را در مراحل بعدی برای دیگ بخار بوجود آورد. زیرا در اثر حرارت به سود و گاز دی اکسید کربن تبدیل می شود. سود یکی از عوامل مهم در خوردگی موضعی در نیروگاههاست که بحث مفصل تر آن در مباحث آینده خواهد آمد. گاز دی اکسید کربن موجود در بخار آب در اثر میعان بخار به صورت اسید کرینیک در می اید که باعث خوردگی لوله های برگشتی می شود که بخار آب خروجی از توربین را به کندانسور (چگالنده) می برند.
یکی دیگر از اشکلات مهم استفاده از زئولیت ها ی سدیمی، عدم کاهش غلظت سیلیس در آب تصفیه شده می باشد که یکی از خطرناکترین ناخالصی های آب تغذیه دیگ بخار در فشارهای زیاد می باشد.
تحقیقات برای رفع عیوب زئولیت های سدیمی ادامه یافت تا آنکه در اواسط دهه 1930 در هلند زئولیت هایی ساخته شد که بجای سدیم فعال، هیدروژن فعال داشتند . این زئولیت ها که به تعویض کننده های کاتیونی هیدروژنی معروف شدند، می توانستند تمام نمکهای محلول در آب را به اسیدهای مربوط تبدیل کنند. بعنوان مثال بی کربناتهای کلسیم و منیزیم به اسید کربنیک تبدیل می شوند که اسید کربنیک بی دی اکسید کربن و آب تجزیه می شود.
دی اکسید کربن تولید شده را می توان توسط هوادهی یا هوازدایی از محیط حذف کرد. لذا با این روش تمام قلیاییت بی کربناتی حذف می شود. رزین های کاتیونی هیدروژنی جدید، سیلیس نداشته و علاوه بر این قادرند همزمان هم سختی آب را حذف کنند و هم قلیاییت آب را کاهش دهند.
آب خروجی از تعویض کننده کاتیونی هیدروژنی، اسیدی است و باید خنثی شود. این کار با اضافه کردن قلیا (باز) یا مخلوط کردن خروجی تعویض کننده کاتیونی هیدروژنی با خروجی تعویض کننده سدیمی (زئولیت ) امکان پذیر است.
تعویض کننده های کاتیونی هیدروژنی هم دارای محدودیت هایی هستند. هنوز آنیونها، مثل سولفات کلراید و سیلیکات حذف نمی شوند.
برای بهبود تکنولوژی تصفیه آب گام های اساسی در سال 1944 برداشته شد که باعث تولید رزین های تعویض یونی آنیونی شد. (3) رزین های کاتیونی هیدروژنی تمام کاتیونهای آب را حذف می کنند و رزین های آنیونی تمام آنیونهای آب از جمله سیلیس را حذف می نمایند. در نتیجه می توان با استفاده از هر دو نوع رزین، آب بدون یون تولید کرد. پیشرفت های بعدی که در دهه 1950 حاصل شد منجر به اختراع و تولید رزین های تعویض یونی ضعیف گردیدکه صرفه جویی قابل توجهی در مصرف مواد شیمیایی مورد نیاز برای احیاء رزین ها را باعث شد.
2- شیمی رزین ها
همانگونه که می دانید محلول های الکترولیت دارای یون های مثبت (کاتیون) و یونهای منفی (آنیون) هستند و از نظر بار الکتریکی خنثی هستند. یعنی مجموع آنیون ها و مجموع کاتیون ها از نظر بار الکتریکی با هم برابرند.
رزین های تعویض یونی شامل بار مثبت کاتیونی و بار منفی آنیونی می باشند به گونه ای که از نظر الکتریکی خنثی هستند. اما تعویض کننده ها با محلول های الکترولیت این تفاوت را داند که فقط یکی از دو یون، متحرک و قابل تعویض است. بعنوان مثال یک تعویض کننده کاتیونی سولفونیک دارای نقاط آنیونی غیر متحرکی است که شامل رادیکال های آنیونی می باشد که کاتیون های متحرکی مثل H+ یا Na+ می توانند به آن متصل باشند. این کاتیون های متحرک می توانند در یک واکنش تعویض یونی شرکت کنند و به همین صورت یک تعویض کنده آنیونی دارای نقاط کاتیونی غیر متحرکی است که آنیون های متحرکی مثل هیدروکسیل یا کلراید می توانند به آن متصل باشند.
دسته بندی | زمین شناسی |
بازدید ها | 14 |
فرمت فایل | doc |
حجم فایل | 15 کیلو بایت |
تعداد صفحات فایل | 14 |
(blanching)
تاثیرات زمان های پوست کندن عناصر معدنی گزیده مستخرج
از جانشین اسفناج که در برزیل استفاده می شده است .
نوشته : لوسیان م . کاواشیما ، لوسیام ، والنته
خلاصه :
اسفناج واقعی در مناطق گرمسیری به خوبی رشد نمی کند ، به همین دلیل در برزیل جنبه تجاری ندارد . در عوض جانشین اسفناج که برای نیوزیلند است در این کشور به طور گسترده استفاده می شود . اطلاعات کمی در خصوص شرح موارد معدنی وجود دارد و هیچ اطلاعی درباره شکستن مواد معدنی محلول در این سبزی در اختیار نیست . حلالیت یک کانی یکی از مهم ترین عوامل جذب آن است . به همین دلیل شکست مولکول های محلول کلسیم ، منیزیم ، آهن ، منگنز ، مس ، روی ، پتاسیم و سدیم در جانشین اسفناج خام تعیین و تاثیرات زمان پوست کندن این مواد معدنی جانشین مشخص شده است . زمان پوست کندن یک ، پنج و پانزده دقیقه ای استعمال می شود . شکست مولکول های محلول منیزیم ، منگنز ، پتاسیم و سدیم با کاهش زمان پوست کندن ، از نظر سایز افزایش می یابند . زمان پوست کندن طولانی تر ( پانزده دقیقه ) باعث فقدان عظیم مواد معدنی می شود . شکستن مواد معدنی محلول ، به طور ضعیف در پرهیز از پتاسیم ، منیزیم ، منگنز و روی شرکت می کند . جانشین اسفناج به سبب نا محلولی کلسیم ، آهن و مس در این سبزی ( احتمالا به دلیل حجم بالا ) نمی تواند منبع رژیمی برای این کانی ها لحاظ شود .
کلمات کلیدی : جانشین اسفناج ، تاثیرات پوست کندن ، عناصر معدنی
1) مقدمه :
در برزیل ، جانشین اسفناج برای انواع سالاد و پخت و پز استفاده می شود . اصل آن برای نیوزیلند و محصولی آبدار متعلق به خانواده آیزواسی است . در مناطق استوایی به خوبی رشد می کند و به همین دلیل به خوبی در این کشور سازگار شده است . به عبارت دیگر ، اسفناج واقعی که سبزی پر برگی متعلق به خانواده چنوپودیاسی است در نواحی معتدل جهان مصرف می شود و در نواحی گرمسیر به خوبی رشد نمی کند . اسفناج واقعی در برزیل جنبه تجاری ندارد . تمرکز مقدار کمی از کانی های مهم غذای و جذبشان برای برای اسفناج واقعی مورد تحقیق قرار گرفته است . اخیرا ترکیب های معدنی برای جانشین اسفناج نیوزیلندی که در برزیل استفاده می شده و سبزی های پر رنگ دیگری به چاپ رسیده است .
حضور یک ماده مغذی در غذا به معنی دسترسی به آن نیست . جذب یک ماده غذایی معدنی بستگی به شکل شیمیایی و حضور افزودنی ها یا بازدارنده های درون غذا و همچنین وضع غذایی و نوع خوردن آن دارد . آزمایشات in vitro و in vivo برای اندازه گیری مقدار دسترسی به مواد معدنی استفاده می شده است . روش in vitro شامل تقلیدی از عمل گوارش و اطلاعاتی جزئی است زیرا شامل مصرف مواد غذایی از ترکیب های انسانی نمی باشد . مطالعات in vivo ، ایزوتوپ های رادیو اکتیو یا ثابت در مورد مباحث انسانی یا حیوانی اندازه می گیرد . این روش به عمل جذب طبیعی نزدیک تر است ، اگر چه نسبت به روش های in vitro طولانی تر و گران تر است . برآورد موجودیت که به صورت مدل های ریاضی ، تجمع مواد معدنی و بازدارنده ها و افزودنی ها را شرح می دهد نیز پیشنهاد شده است . حلالیت یک کانی ، یکی از شرایط جذب به وسیله مدت هضم است و دانش آن اطلاعات اولیه برای قدرت جذب را فراهم می کند .
اندازه گیری حلالیت روشی ساده تر و ارزان تر نسبت به مطالعات in vivo وin vitro است . در این مسیر ( تسیر ، کمپ بل و بیسون ) موافقت نامه جالبی را که ابتدا برای مطالعه رسوب رودخانه ای استفاده می شود ، پیشنهاد کردند .
این روش برای رژیم آزمایشی حیوانی و شرح معده ای و روده ای در مطالعه هضم و جذب آهن در موش ها در خواست شده است . ( ریک دال ) و ( لی ) روش دیگری را دنبال کرده و کلسیم قابل تجزیه موجود در شیر و اسفناج واقعی را در نمونه هایی که برای هضم in vitro پپسین و HCI و نمونه های غیر قابل هضم بوده است اندازه گیری کردند . هنگامی که کلسیم قابل تجزیه با نمونه های غیر قابل هضم مقایسه شد ، شرح آن بیش از دو برابر بزرگتر از نمونه های هضم شده بود . ( شمیت ، مک دونالد و کلی ) به نوبت ، آهن ، کلسیم و منیزیم موجود در آب و موجد در هضمin vitro پپتیک که از برگ های همیشه بهار خام و پخته گرفته شده است را اندازه گیری کردند . نتیجه دو روش برای نمونه های خام نزدیک به هم بود ولی برای نمونه های پخته شده ، هنگامی که با هم مقایسه شدند ، نتیجه هضم پپتیک دو برابر آب بود.
اکسالیت ها ( oxalates ) بازدارنده های مهمی برای جذب مواد معدنی هستند ، زیرا آنها نمک های نا محلول را همراه کلسیم ، آهن و منیزیم شکل می دهد . حضور اکسالیت ها در غذاها مربوط به کلسیم است زیرا آنها جذب این کانی را کاهش می دهند .
جذب کلسیم از اسفناج واقعی که یک غذای پر اکسالیت است ، برای مباحث انسانی به صورت کم نشان داده شده است . مقدار اکسالیت موجود در اسفناج خام نیوزیلند که در برزیل هم استفاده شده است ، تعیین شده و تقریبا 5 برابر (g 100/ mg 7/95 ± 7/1764 ) بلند تر از اسفناج واقعی است ( g 100/8/ ± 6/329 ) انحراف استاندارد ، تغییر پذیر که در طبیعت بخورد می کند و مقصد نهایی است را نشان می دهد .
دسته بندی | زمین شناسی |
بازدید ها | 22 |
فرمت فایل | doc |
حجم فایل | 123 کیلو بایت |
تعداد صفحات فایل | 20 |
فهرست مطالب
● تأثیر شبکههای حمل و نقل بر محیطزیست 4
● تأثیرات بخش حمل و نقل جادهای بر محیطزیست 8
● تأثیر بر محیط طبیعی 9
● تأثیر بر محیطهای مصنوعی 10
● تأثیر بر سلامت و رفاه عمومی 11
● سیستم حمل و نقل جادهای ورودیها و خروجیها 17
● نتیجهگیری 18
منابع 20
تأثیر شبکههای حمل و نقل بر محیطزیست
در این مقاله، در مورد مسائل وابسته به جاده، بحث و بررسی شده و نیز سیاستهای برنامهریزی مناسبسازی حمل و نقل با محیطزیست که بیشترین دورنمای کاهش مصرف انرژی را ارائه میکند، مورد ارزیابی و نتیجهگیری قرار گرفته است.
از مسائل وابسته به جاده که به طبیعت آسیب میرساند میتوان ساخت جاده و نگهداری آن را در مصرف منابع طبیعی نام برد، در حالی که تغییر منظر طبیعت از بین بردن زهکشهای طبیعی، محیط وحش و سیستمهای اکولوژیکی نیز از عواقب مربوط به ساخت جاده است.
در عین حال، طراحی، ساخت و نگهداری نامناسب و بد، باعث افزایش سطح تصادفات بهخصوص در کشورهای در حال توسعه شده است. امروزه در کشورهای پیشرفته، حفظ محیطزیست، بخشی عمده از برنامهریزی برای ساخت و نگهداری جادهها را تشکیل میدهد. در این کشورها سعی بر آن است تا از اثرات منفی حمل و نقل جادهای بر منظر محیط، سروصدا، کیفیت هوا و محیط زندگی وحش پیشگیری کنند، بنابراین کاربران و استفادهکنندگان از حمل و نقل در نتایج محیطی آن شریک هستند در حالی که لازمه حمل و نقل کارا و کمککننده، توسعه کشور است و در عین حال محیطی عاری از هرگونه آلودگی مورد نظر است.
تأثیر مناسبسازی حمل و نقل جادهای بر محیطزیست در راستای راهبرد توسعه پایدار تاکنون مورد توجه کمتری قرار گرفته است. اگرچه این بخشی از بخشهای عمده و تأثیرگذار بر محیطزیست بوده و در بسیاری از موارد، موجب عدم تعادل اکولوژیکی میشود. توسعه زیربناهای حمل و نقل جادهای علاوهبر زمین، منابع طبیعی و انرژی بسیاری را مصرف میکند.
تأثیرات عمده اکولوژیکی ساختهای حمل و نقل عبارتند از:
▪ از دست رفتن زمینهای کشاورزی و اختلالات بیولوژیکی
▪ تغییر در آبهای سطحی و زهکشها
▪ فرسایش خاک و رسوبگذاری
▪ آلودگی آب، تغییرات در منظر و اکوسیستم
شکی نیست که برای اجرای سیاستهای توسعه، گسترش حمل و نقل، ضروری است، اما حفظ محیطزیست نیز باید در دستور کار قرار گیرد. ایجاد و توسعه حمل و نقل جادهای، مسائل بسیاری را در رابطه با محیطزیست به وجود میآورد. این مسائل به چهار دسته تقسیم میشوند:
۱) مسائل وابسته به وسیله نقلیه
۲) مسائل وابسته به جاده
۳) مسائل وابسته به استفادهکنندگان
۴) مسائل وابسته به سیاستها و خطمشیها
● تأثیر شبکههای حمل و نقل بر محیطزیست
حمل و نقل، کلید توسعه است. حمل و نقل را میتوان موضوع تأمین حرکت انسان و کالا بهطور مطلوب و اقتصادی تعریف کرد. واضح است که در این مطلوبیت، ایمنی، راحتی، سرعت، نظم و گستردگی مستقر است. در این رابطه، توجه به همسویی برنامههای توسعه حمل و نقل با دیگر بخشها از جمله محیطزیست، ضروری است. در ایران، حمل و نقل جادهای، بیشترین سهم را در جابهجایی بار و مسافر برعهده دارد. یعنی حدود ۹۰ درصد از حمل بار و مسافر، توسط حمل و نقل جادهای انجام میشود.
با توجه به درصد مذکور، راه و زیرساختهای وابسته به آن از اهمیتی ویژه برخوردار است. در حمل و نقل با هر شیوهای، دو بخش عمده و وابسته به یکدیگر وجود دارند:
۱) زیرساختهای حمل و نقل
۲) وسایل حمل و نقل
دسته بندی | زمین شناسی |
بازدید ها | 25 |
فرمت فایل | doc |
حجم فایل | 49 کیلو بایت |
تعداد صفحات فایل | 15 |
بنزن
بنزن مایعی است بیرنگ و خوشبو که در تولید صنعتی گروهی از مواد مانند پلی استیرن،لاستیک مصنوعی و نایلون استفاده میشود.این مایع در تهیهٔ شویندهها و رنگها نیز به کار میرود.
ساختار بنرن
بنزن متعلق به خانوادهٔ هیدروکربنهاست که هر مولکول آن ۶ اتم کربن و ۶ اتم هیدروژن دارد که یک آرایش حلقوی را بهوجود میآورند. این آرایش حلقهٔ بنزن نامیده میشود که در بسیاری از ترکیبات از جمله آسپیرین و مادهٔ منفجرهٔ تی.ان.تی نیز وجود دارد. بنزن سمی و سرطانزا است.بنزن در طبیعت به دو ساختار صندلی و قایقی وجود دارد که ساختار صندلی ان غیر قطبی بوده و ساختار قایقی قطبی میباشد.
تاریخچه
بنزن را مایکل فارادی در سال ۱۸۲۵ میلادی کشف کرد.بنزن در ابتدا از طریق حرارت دادن و قطران زغالسنگ و سپس تبدیل بخار آن به مایع بهدست میآمد اما امروزه بنزن را به مقدار زیاد از نفت خام استخراج میکنند.
ساختار بنزن توسط فردریش آگوست ککوله شناسایی شد. ویژگیهای بنزن
مایع بی رنگ ، معطر و دارای رایحه خوب، بسرعت بخار می شودو دارای قابلیت اشتعال فوق العاده بالا است این ماده در مواد پلاستیک ، رزین ،نایلون ، روغن های روان ساز،مواد رنگی،پاک کننده ها سموم آفت کش و..موجود است
چگونه در معرض آن قرار می گیریم؟
*استنشاق از طریق : بخارات و مقدار کمی ازآن در دود سیگار
*بلعیدن : از طریق منابع آب زیر زمینی آلوده
تماس و جذب از راه پوست
فرمول مولکولی
با بررسیهای اولیه و اندازه گیری وزن مولکولی معلوم شده است که بنزن از شش اتم کربن و شش اتم هیدروژن تشکیل شده است و به فرمول میباشد. ولی سالیان سال ، طول کشید تا آرایش واقعی اتمها و ساختمان بنزن معلوم گردد.
ساختمان بنزن
ساختمان بنزن توسط دانشمند آلمانی ، ککوله (Kekule) در عالم رویا (!) کشف شد. مولکولهای زیادی با فرمول موجود میباشند، اما خصوصیات آنها با همدیگر متفاوت میباشد و بیشتر از همه ، بنزن متفاوت میباشد.
بنزن سه نوع مشتق دو استخلافی ایجاد میکند، یعنی سه نوع مشتق دو استخلافی اورتو ، متا ، و پارا ایجاد مینماید. اما اگر پیوندهای л ساختمان بنزن ، مستقر در نظر گرفته شوند، مشتق 1 و 2 بنزن ، بایستی بهصورت دو فرم باشد، ولی بیشتر از یک فرمول نیست.
ککوله برای اینکه یکی بودن این دو ایزومر را توجیه نماید، مولکول بنزن را دینامیک در نظر گرفت و پیشنهاد کرد که دو حالت در تعادل متحرکند. در واقع برای اولین بار ، ککوله ایده الکترونهای غیر مستقر را مطرح نمود که بعدها به "پدیده توتومتری" موسوم گردید. همچنین بررسیهای دقیق نشان داده است که طول پیوندهای کربن _ کربن در بنزن با هم برابر است و برابر 1.39 آنگستروم میباشد که چیزی بین پیوند ساده و پیوند دوگانه کربن _ کربن میباشد که خود تاییدی بر غیر مستقر بودن پیوندهای л (پی) در حلقه بنزن میباشد.
گرمای هیدروژندار شدن بنزن و پایداری حلقه بنزن
مطالعات تجربی بیشتر ، نشان داده است که از هیدروژندار شدن 1 ، 3 _سیکلو هگزا دی ان)) ، فقط 55.4 کیلو کالری بر مول ، انرژی ، آزاد میشود که در حدود 1.8 کیلو کالری کمتر از مقدار پیشبینی شده میباشد. این مقدار انرژی که در موقع تشکیل ماده آزاد میگردد، به مزدوج بودن پیوندهای л نسبت داده میشود.
اگر بنزن را بصورت سیکلو هگزا تری ان (سه پیوند л مستقر) در نظر بگیریم، موقع هیدروژندار شدن بایستی به مقدار 3x28،6=85،8 کیلو کالری بر مول انرژی آزاد نماید. تجربه نشان میدهد که از واکنش هیدروژندار شدن حلقه بنزن ، فقط 49.8 کیلوکالری بر مول انرژی آزاد میشود که به مقدار 36 کیلوکالری بر مول کمتر از مقدار پیشبینی شده میباشد.
این مقدار انرژی که در موقع تشکیل حلقه آزاد میگردد، "انرژی رزونانس حلقه بنزن" نامیده میشود. بعلت همین آزادسازی انرژی میباشد که بنزن پایداری نسبی بیشتری دارد و تمایلی برای انجام واکنشهای افزایشی از خود نشان نمیدهد.
خصلت آروماتیکی
ویژگیهای مهم ترکیبات آروماتیک به قرار زیر میباشند:
گرمای هیدروژندار شدن و گرمای سوختن آنها پایین است.
برای انجام واکنشهای افزایشی تمایل زیادی نشان نمیدهند.
در واکنشهای جانشینی الکترونخواهی شرکت میکنند.
این خصلتها ، تفاوت بسیار زیاد ترکیبات آلکن و ترکیبات آروماتیک را نشان میدهند.
انرژی رزونانس حلقه بنزن
بعلت پخش الکترونهای л در بنزن ، 36.1 کیلو کالری بر مول ، انرژی آزاد میشود و بنزن به پایداری نسبی بیشتری میرسد. نتایج تجربی حاصل از واکنشهای هیدروژندار شدن هیدروکربنهای جوش خورده دو حلقهای و سه حلقهای و … نشان میدهد که هرچه تعداد الکترونهای بیشتری در رزونانس شرکت کرده باشند، انرژی آزادشده ، بیشتر و پایداری نسبی نیز بیشتر خواهدبود.
اثرات استنشاق بنزن:
دسته بندی | زمین شناسی |
بازدید ها | 17 |
فرمت فایل | doc |
حجم فایل | 1413 کیلو بایت |
تعداد صفحات فایل | 14 |
بررسی امکان پذیری تکنیک زیست درمانی – در محل به منظور کاهش آلودگی اراضی پالایشگاه شیراز با استفاده از روش تاگوچی
چکیده
رشد فزاینده آلاینده های زیست محیطی در اثر مصرف بی رویه انرژی و منابع طبیعی سبب بروز پیامدهای ناگوار گشته است. آلودگی هوا، منابع آب، خطر انقراض بسیاری از گونه های حیات وحش، بر هم خوردن توازن زندگی موجودات زنده، تهدید سلامتی انسان و بروز بسیاری از بیماریهای خطرناک، سبب شده است که کنترل مصرف انرژی و بهبود وضعیت محیط زیستآلوده، به عنوان چالشهای حائز اهمیتی در پیش روی محققین قرار گیرد. در همین راستا، زیست درمانی خاک یا آب آلوده در سالهای اخیر به عنوان روش موثر برای پاکسازی مناطق آلوده، به خصوص مناطق آلوده به آلاینده های نفتی شناخته شده است. با به کار گیری این فرایند، می توان آبهای زیرزمینی و خاک آلوده را به طور مؤثری بازیافت نمود و به محیط زیست باز گرداند. در این پژوهش، اراضی پالایشگاه شیراز به عنوان مطالعه موضوعی مورد بررسی قرار گرفته است. در ابتدا با انجام آزمایش TOC از نمونه های آبهای زیرزمینی، میزان آلودگی نقاط مختلف این اراضی تعیین شد و آزمایش GC/MS نیز برای شناسایی نوع آلاینده ها انجام گرفت. به منظور بررسی امکان پذیری فرایند زیست درمانی انتخاب شده، تأثیر عوامل مختلف بر این فرایند با استفاده از روش تاگوچی مورد بررسی قرار گرفت. در نهایت، با حصول به مقادیر بهینه پارامترها در مقیاس نیمه صنعتی، عملیات پاکسازی انجام پذیرفت.
مقدمه
تجمع آلاینده های نفتی، علی الخصوص آلاینده های نفتی در محیط زیست، سبب بروز مشکلات بسیاری شده است، زیرا خاک آلوده به این ترکیبات برای اهداف کشاورزی، صنعتی یا مراکز تفریحی غیر قابل استفاده است و همچنین منبعی بالقوه برای آلوده ساختن آبهای سطحی و زیر زمینی به شمار می رود (1، 2، 3). در راستای شناسایی آلاینده های آب و خاک تحقیقات بسیاری در سراسر دنیا انجام پذیرفته است. در کشور ایران نیز مطالعات و آزمایشاتی توسط حسنی ضیابری و همکاران در ارتباط با آلودگی هیدروکربنی کانال کشتیرانی غازیان انجام پذیرفته است. حسنی نژاد فراهانی و همکاران نیز تحقیقاتی را در زمینه آلودگی سواحل مشرف به پالایشگاه بندر عباس انجام داده اند. شجاع الساداتی و همکاران، یغمایی و همکاران نیز زیست درمانی آبهای آلوده به آلاینده های هیدروکربنی را در مقیاس آزمایشگاهی مورد بررسی قرار داده اند. نتایج این تحقیقات بیانگر این واقعیت است که منابع آبهای زیر زمینی که با انواع آلاینده های هیدرو کربنی آلوده شده اند را می توان با فرایند زیست درمانی مناسب پاکسازی نمود و در چرخه طبیعت وارد ساخت.
یکی از متداولترین منابع آلودگی نفتی، نشت از تانکهای ذخیره زیرزمینی است. به دلیل خطرات ناشی از آتش گرفتگی، تانکهای حاوی سوخت مایع در زیرزمین قرار داده شده اند. در سالهای اخیر بسیاری از تانکهایی که در ایستگاههای پمپ بنزین قرار دارند شروع به نشت کرده اند. تانکهای زیرزمینی که سوخت گرمایی خانه ها را ذخیره می کنند نیز، یکی از منابع آلاینده به شمار می روند. همچنین، تانکهای ذخیره مرکزی که مقادیر بسیار زیادی بنزین، سوخت جت یا دیگر محصولات نفتی را قبل از توزیع به فرودگاهها، تأسیسات نظامی و پالایشگاهها ذخیره می کنند نیز، جزء منابع آلاینده اند. همچنین تصادف تانکرها، شکستن خطوط لوله و انفجار دکلهای نفتی در دریا می تواند سبب آلودگی گردد. منابع آلودگی عمدی نیز عبارتند از تخلیه در چاهها، ریختن دورریزهای روغنی و ...(4).
بعد از اینکه هیدروکربنهای نفتی وارد خاک می شوند، با آب و هوا برای جایگزینی در حفره ها رقابت می کنند. در ناحیه غیر اشباع خاک انتقال و مهاجرت آلاینده ها به لایه های زیرین بر اساس جذب سطحی، نفوذ و نیروی گرانش صورت می پذیرد. پس از ناحیه غیر اشباع، ناحیه مویینه قرار دارد. در این ناحیه آب در فضای بین ذرات خاک به واسطه خاصیت مویینگی به سمت بالا حرکت می کند در نتیجه اشباعیت در نواحی بالاتر افزایش می یابد. ناحیه بعدی، ناحیه نوسانی نام دارد. در این ناحیه سطح آب مرز ساکن ندارد اما به صورت دوره ای نوسان می کند. در اثر نوسان آب و حرکت عمودی آن، توده هیدروکربن موجود در فضای حفره های خاک یا هیدروکربنهای جذب شده بر روی سطح ذرات خاک جدا می شوند و وارد آب می گردند، و به این ترتیب آلاینده ها از خاک به آبهای زیرزمینی منتقل می شوند (4، 5).
برای پاکسازی خاک و آبهای زیرزمینی آلوده به آلاینده های هیدروکربنی روشهای مختلفی وجود دارد اما آنچه تکنیک زیست درمانی را نسبت به سایر تکنیکها متمایز می کند، زمان مورد نیاز برای رسیدن به میزان پاکسازی مطلوب است (6). در این تکنولوژی میکروارگانیزمها نقش اصلی را ایفا می نمایند. آنها آلاینده های آلی را به دو منظور مورد استفاده قرار می دهند: یکی اینکه از آنها به عنوان منبع کربن برای ادامه حیات سلول جدید استفاده می کنند. دیگر اینکه آلاینده آلی تامین کننده الکترون برای میکروارگانیزمها می باشند. در واقع میکروارگانیزمها با استخراج الکترون و انتقال آن به الکترون گیرنده ای مثل اکسیژن (در شرایط هوازی) انرژی مورد نیاز برای رشد و فعالیت سلول جدید فراهم می کنند. البته با وجود مواد مغذی مثل فسفر و نیتروژن فعالیت میکروارگانیزمها بهبود می یابد (7، 8، 9).
قدم اول قبل از به کار گیری هر نوع روش پاکسازی، شناسایی آلاینده ها با استفاده از تجهیزات مناسب است. در واقع نتایجی که از آنالیز خاک یا آب آلوده به دست می آید سبب می شود که بتوان پتانسیل آلودگی را تخمین زد. برای شناسایی آلاینده ها دو روش کمی و کیفی وجود دارد. از متداولترین روشهای کمی می توان استفاده از دستگاه و استفاده از دستگاه کروماتوگرافی گازرا نام برد. برای شناسایی کیفی آلاینده ها نیز روشهای مختلفی وجود دارد، از جمله کروماتوگرافی لایه نازک، کروماتوگرافی سیال فوق بحرانی، کروماتوگرافی مایع فشار بالاو کروماتوگرافی گاز/ طیف سنجی جرمیرا می توان نام برد 10.
پس از شناسایی آلاینده ها، با توجه به شرایط محیطی و امکانات موجود، تکنیک مورد نظر انتخاب می گردد. اما قبل از به کار گیری آن لازم است که امکان پذیری آن در آزمایشگاه مورد بررسی قرار گیرد. می توان گفت که در صورت موفقیت تکنیک مورد نظر در آزمایشگاهی یا نیمه صنعتی، امکان به کارگیری آن میسر می گردد. بنابراین تعیین پارامترهای تأثیرگذار بر تکنیک و ارزیابی این پارامترها فاز اول به کار گیری هر نوع تکنیک زیست درمانی محسوب می گردد 11.
روش آزمایش
تعیین کمی آلاینده های موجود در آبهای زیرزمینی پالایشگاه شیراز
دسته بندی | زمین شناسی |
بازدید ها | 15 |
فرمت فایل | doc |
حجم فایل | 1449 کیلو بایت |
تعداد صفحات فایل | 20 |
بررسی افیولیت منطقه دهشیر و مقایسه آن با دیگر مناطق
چکیده
سنگهای اولترامافیک سازنده افیولیتها در اثر هجوم سیالات گرمابی حاوی CO2 تحت تاثیر فرآیند کربناته شدن تبدیل به لیستونیت می شوند. لیستونیتها با مجموعه کانیائی عمومی کوارتز و کربناتهای حاویMg- Fe- Ca مشخص هستند. از چند دهه گذشته در افیولیتهای جهان، کانی سازی طلا در همیافتی با این سنگها مورد توجه قرار گرفته است.
افیولیتهای ایران مرکزی به شکل دو کمربند اصلی یعنی دهشیر- سورک- نائین و جندق-انارک رخنمون دارند. این افیولیتها در بخش سرپانتینیتی خود لیستونیتی شده اند. دگرسانی گرمابی در این سنگها تا مرحله سیلیسی شدن(شکل گیری بیربیریتها) نیز یپش رفته است.در افیولیت دهشیر لیستونیتها(در دو نقطه)هم ساز با روند عمومی افیولیت ها فاقد کانی سازی طلا هستند. در حالیکه لیستونیتی شدن تا مرحله تشکیل بیربیریت در افیولیت سورک پیش رفته است و کانی سازی طلا در همیافتی با فریت کرومیت مشاهده شده است. کانی سازی پیریت در بخشهای شدیدا سیلیسی شده (بیربیریت) همراه با ناهنجاری طلا- جیوه در افیولیت نائین شاخص می باشد.در سرپانتینیتهای جندق فرآیند کربنات زائی سنگهای تالک – سرپانتین کربنات با ناهنجاری ناچیز طلا را شکل داده است. افیولیت قدیمی انارک میزبان وسیع لیستونیتی شدن با مراحل مختلف تکوین کانیهای متنوع می باشد. وجود طلا علاوه بر مشاهدات میکروسکوپی توسط آنالیزهای ژئوشیمیایی نیز به اثبات رسیده است.
ملانژ افیولیتی ائین در لبه غربی زون ایران مرکزی و در امتداد زون گسلی دهشیر بافت، از بافت تا دهشیر – جنوب نائین – شمال نائین – انارک و … رخنمون هایی را نشان میدهد. مشاهدات صحرایی در زمین شناسی اولیه شباهتهای نزدیکی را بین این ملانژها نشان میدهد. لیتولوژی این
دو ناخیه به مقدار زیادی مشابه بوده و از بالا به پائین شامل:
1ـ آهک های پلازیک، آهک ماسه ای و رادیولاریت کرتاسه فوقانی
2ـ بازالت ها با ساخت بالشی و ماسیون (بیشتر در منطقه دهشیر)
3ـ دایکهای صفحه ای با ترکیب دلریتی
4ـ پلاژیورانیت ها که در زیر دایک ها و روی گابروها قرار دارند.
5ـ خانواده گابرو که شامل نوریت ها، گابروها و گابروهای نوریتی می باشد (دهشیر کابروی آمفیبول، و پیروکسن دار)
6ـ سنگهای پریدوتیتی با بافت کومولا شامل هرزبورژیت، ورلیت و دونیت
7ـ سنگهای پریدوتیتی با بافت تکتونیت شامل هرزبورژیت، ورلیت و دونیت که این سنگها در افیولیتهای نائین گاهی توسط دایکهای رودنژیتی قطع شده اند کمپلکس افیلویتی نائین به طور عمده از پریدوتیتهای هرزبورژیتی و سرپانتینیت شتکیل شده اند. پیروکسنیت ها و لرزولیت ها در آن خیلی کم است. گاهی دایکهای لرزولیتی و دیابازی و گابرویی آنها را قطع کرد اند. سنگهای اهکی و رادیولاریت به طور پراکنده در سرتاسر منطقه وجود دارد که از قطعات چند متری تا چند صد متری می باشند بخصوص در بخش جنوب شرقی افیولیتها (شمال شرق نائین) سن احتمالی ملانژ افیولیتی نائین پالئوسن تا ائوسن زیرین می باشد، زیرا جوانترین سنگ رسوی منطقه متعلق به ائوسن زیرین است. با توجه به جایگیری بسیاری از افیولیتهای ایران بر اثر فاز کوهزایی لارامید احتمالا این ملانژ افیولیتی بر اثر این فاز کوهزایی حاصل شده است. نتایج آنالیزهای ژئوشیمیایی نشان می دهد که ملانژ افیولیتی شمال نائین از نظر K2O فقیر شده (دارای کمتر از ده درصد وزنی K2O) است. ترمهای بازیک و حد واسط این مجموه نسبت به آهن و تیتان غنی شدگی نشان نمی دهند و از نظر پترولوژی و ژئوشیمی دارای روند ماگمای تولوئیت جزایر قوسی بوده که در نتیجه ذوب بخشی یک منشا تهی شده بوجود امده است. با توجه به شواهد صحرایی، ژئوشیمیایی، پتروگرافی و پترولوژی و شباهتهای این ملانژ افیولیتی به افیولیتهای سبزوار وانارک، این سنکانس با تولئیتهای جزایر قوسی قابل مقایسه است. و اما در افیولتهای دهشیر داد ه های ژئوشیمیایی عناصر اصلی، قلیل و نادر خاکی برای تایید خویشاندی واحدهای مختلف سنگی مورد بررسی قرار گرفته اند. به طور کلی ماگمای سازنده افیولیت دهشیر دارای سرشت تولئیتهای MORB است که از ذوب بخشی (حدود 22%) سنگ مادرگارنت لرزولیت حاصل شده است. پلاژیوگرانیتها در اینجا به دو دسته قابل جدایش هستند:
1ـ در همیافتی با دایکهای صفحه ای – گابروهای آمفیبول دار
2ـ در همیافتی با مجموعه دگرگونی ناحیه ای بصورت نافذ در آن.
در هر دو دسته پلاژیوگرانیت شباهت ژئوشیمیایی داشته و در محدوده پلاژیوگرانیتهای اقیانوسی (OP) واقع می شوند. پلاژیو گرانیتهای دسته دوم احتمالا از ذوب بخشی گابروهای هیدراته – آمفیبولیتها حاصل شده اند. با توجه به شواهد موجود محیط ژئودینامیک افیولیت دهشیر یک کافت اقیانوسی بوده است. رخداد سرپانتینی شدن اولترامافیک ها در گستره دهشیر منجر به آزادی Cao و هجوم آن به سوی دایکهای گابرویی شده استرودنژیت ها که حاصل متاسوماتیسم هستند از مجموعه کانیابی جگراسولر، پکتولیت، وزوویان ، اسفن، پرهنیت، اپیدوت تشکیل شده اند. فرایند کربنات زایی (لیستونیتی شدن) تحت تاثیر سیالات حاوی CO2 در اولترابازیک های دهشیر صورت گرفته است. ولکانیسم کوارتنر با سرشت کالکوآلکالن در حواشی افیولیت به عنوان عامل تامین سیالات co2 دار در لیستونیتی شدن از دیدگاه ژئوشیمی مورد بررسی قرار گرفته است.
پترولوژی و ژئوشیمی افیولیت های دهشیر با تأکید بر آلتراسیون هیدروترمال وابسته(رودنژیتی شدن، لیستونیتی شدن)
مجموعه افیولیتی دهشیر واقع در 80 کیلومتری جنوب غرب یزد در راستای گسل بزرگ دهشیر - بافت رخنمون دارد و جزئی از کمربند حلقوی افیولیت ایران مرکزی محسوب می شود.
واحدهای سنگی تشکیل دهنده این افیولیت به ترتیب از پایین به بالا شامل موارد زیر است: الف) سنگ های اولترامافیک متشکل از سرپانتینیت، هرزبورژیت، دونیت لرزولیت و پیروکسنیت. ب) گابرو های آمفیبول دار، پیروکسن دار و کمتر دیوریت. ج) پلاژیوگرانیت. د) دایک های صفحه ای. ه) بازالت های توده ای وکمتر بالشی. و) سنگ آهک های پلاژیک و رادیولاریت ها به سن کرتاسه فوقانی. سنگ های دگرگونی که شامل دگرگونی های کف اقیانوسی، دگرگونی های دینامیک در زون های برشی و دگرگونی های ناحیه ای تا رخساره آمفیبولیت هستند. بر پایه مشاهدات صحرائی، پلاژیوگرانیت ها به دو دسته قابل جدایش هستند. الف) در همیافتی با دایک های صفحه ای- گابروهای آمفیبول دار. ب) در همیافتی با مجموعه دگرگون ناحیه ای و بصورت نافذ در آن.
داده های ژئوشیمیایی عناصر اصلی، قلیل و نادر خاکی برای تأئید خویشاوندی واحدهای مختلف سنگی مورد بررسی قرار گرفته اند. بطور کلی ماگمای سازنده افیولیت دهشیر دارای سرشت تولئیت های(MORB) است که از ذوب بخشی (حدود 22%) سنگ مادر گارنت لرزولیت حاصل شده است.
هر دو دسته پلاژیوگرانیت، شباهت ژئوشیمیایی داشته و در محدوده پلاژیوگرانیت های اقیانوسی(OP)واقع می شوند. پلاژیوگرانیت های دسته دوم احتمالاً از ذوب بخشی گابروهای هیدراته و آمفیبولیت ها حاصل شده اند.
با شواهد موجود محیط ژئودینامیک افیولیت دهشیر یک کافت اقیانوسی بوده است. رخداد سرپانتینی شدن اولترامافیک در گستره دهشیر منجر به آزاد سازیCaOو هجوم آن به سوی دایک های گابرویی شده است. رودنژیت ها که حاصل متاسوماتیسم هستند از مجموعه کانیائی گروسولر، پکتولیت، وزوویان، اسفن، پرهنیت، اپیدوت تشکیل شده اند.
دسته بندی | زمین شناسی |
بازدید ها | 14 |
فرمت فایل | doc |
حجم فایل | 28 کیلو بایت |
تعداد صفحات فایل | 26 |
بررسی ویژگی روش آنالیز غیرکروماتوگرافی جیوه
بوسیلة جریان تزریقی در سیستم پیش تغلیظ
مجهز به کامپیوتر در ترکیب با
تولید بخار شیمیایی در اسپکترومتری
فلورسانس اتمی
مقاله
یک روش جدید غیرکروماتوگرافی مختص جیوه بر اساس حفظ انتخابی (گزینش پذیر) متیل جیوه و جیوه معدنی روی دیواره داخلی راکتور پیچیده با استفاده از آمونیوم دی اتیل دی تیو فسفات و دی تیازون به عنوان معرف های (شناساگرهای) کمپلکس دهنده توسعه داده می شوند که به ترتیب مختص به پیش تغلیظ سورپشن (عمل جذب و دفع در یک زمان) مجهز به کامپیوتر و جریان تزریقی (تزریق در «اورنش») همراه با اسپکترومتری فلورسانس اتمی که در آن تولید بخار شیمیایی پراکنده نشده صورت می گیرد هستند. در pH=2 پیش تغلیظ جیوهی معدنی روی دیواره های داخلی راکتور پیچیده انجام میشود که این امر بر اساس حفظ انحصاری کمپلکس Hg-DDP در حضور متیل جیوه از طریق فرو بردن در محلول سادة آمونیوم دی اتیل دی فسفات می باشد و پیش تغلیظ انتخابی متیل جیوه بادی تیازون بجای آمونیوم دی اتیل فسفات صورت می گیرد از اسید هیروکلریک 15% (V/V) برای شستشوی گونه جیوة باقیمانده (حفظ شده) استفاده می کنند که برای شناسایی در اسپکترومتری فلورسانس اتمی با محلول KBH4 ترکیب می شود.
تحت بهترین شرایط تجربی نمونة جیوه معدنی و متیل جیوه 30 و 20 h-1 با عامل های ازدیادی 13 و 24 هستند. حدود تشخیص برای Hg2+ تا ngl-1 و برای CH3Hg+ 2.0ngl-1 میباشد . دقت یازده اندازه گیری سیگنال (RSD) از هر 0.2 میکروگرم در لیتر Hg2+ و CH3Hg+ 2/2% و 8/2% است.
روش های پیشرفته که از طریق تجزیه مواد مرجع تأیید شده و اندازه گیری{های بهبود یافته معتبر می شوند، برای تعیین جیوة معدنی و متیل جیوه دو نمونه های آبی و زیست شناسی به کار برده میشوند.
مقدمه
تجربی
1-2- ابزار
2-2- معرف ها (شناساگرها)
3-2- پیش رفتار نمونه
4-2- طرز کار
5-2- روش پیشرفته
6-2- روش معتبر
نتایج و بحث
1-3- شمای ویژه سیستم جدا کنندة سورپشن مجهز به کامپیوتر و پیش تغلیظ در KR کوپل شده به CVG-AFS با استفاده از دو معرف کمپلکس دهنده گزینش پذیر.
2-3- مهمترین پارامترهای تجربی
1-2-3- غلظت محلول عامل کمپلکس دهنده
2-2-3- غلظت شستشو دهنده
3-2-3- غلظت KBH4
4-2-3- دمای اتمیزر
5-2-3- طول KR و شستشوی KR
3-3- اجرای تجزیه ای
4-3- کاربرد واقعی تجزیه
1-4-3- تداخلات
2-4-3- آنالیز نمونه
4- محاسبات شناسایی رفرنس ها
دسته بندی | زمین شناسی |
بازدید ها | 22 |
فرمت فایل | doc |
حجم فایل | 118 کیلو بایت |
تعداد صفحات فایل | 28 |
موضوع
بررسی کاربرد جیآیاس در ساماندهی مدارک علوم زمین
چکیده
پیچیدگی، تنوع وحجم انبوه اطلاعات جغرافیایی ازیک سو و تواناییهای رایانه درعرصه اطلاعات ازسوی دیگر، فلسفه وجودی سیستمهای اطلاعات جغرافیایی(جیآیاس) را تبیین میکند.
ازآنجاکه بخش عمده اطلاعات علوم زمین موجود در پایگاههای مرکز اطلاعات و مدارک علمی ایران، شامل اطلاعات مکانی وتشریحی است، مناسب ورود به سیستمهای اطلاعات جغرافیایی میباشد و میتوان این اطلاعات را آماده استفاده در این سیستمها نمود. پژوهش حاضر با این دیدگاه و با هدف بررسی کاربرد جیآیاس در ساماندهی مدارک علوم زمین موجود در مرکز انجام شده است. در راستای رسیدن به این هدف، پس ازگردآوری کلیه اطلاعات توصیفی و مکانی مورد نیاز مرتبط با علوم زمین از پایگاههای مرکز،کار تفکیک،کنترل، دستهبندی وکدگذاری آنها برای ورود به سیستم اطلاعات جغرافیایی انجام شد. به منظور ایجاد پایگاهی از اطلاعات فوق، با مجموعه دادهها، لایههای اطلاعاتی مربوطه تشکیل شد و به منظور نمایش، تشریح و انجام تحلیلهای لازم بر روی دادهها، مورد استفاده واقع گردید.
بدین وسیله علاوه بر دسترسی صحیح و سریع به دادههای مورد نیاز در یک حجم وسیع، امکان ارائه و به تصویرکشیدن اطلاعات مکانی و موضوعی در قالب نقشه، جدول و نمودار، ویرایش و بهنگام نمودن دادهها ونیز امکان استفاده از دادههای موجود در جهت اهداف مختلف و براساس نیازهای گوناگون کاربران فراهم میگردد. همچنین زمینهای برای شناساندن و معرفی قابلیتها و پتانسیلهای متعدد و در عین حال، تشخیص خلأهای مطالعاتی مناطق مختلف جغرافیایی ایجاد خواهد شد. نهایتاً بهمنظور تعمیم کاربرد این سیستم در ارتباط با دیگر اطلاعات موجود در پایگاههای مرکز (که به نحوی با موقعیت مکانی در ارتباطاند)، مدلی از فرایند انجام این طرح ارائه شده است.
کلیدواژهها: سیستم اطلاعات جغرافیایی (جیآیاس) / پایگاههای اطلاعاتی/ اطلاعات توصیفی / اطلاعات مکانی
مقدمه
(جیآیاس) یک سیستم اطلاعاتی است که پردازش آن بر روی اطلاعات مکان مرجع یا اطلاعات جغرافیایی است و به کسب اطلاعات در رابطه با پدیدههایی میپردازد که بهنحوی با موقعیت مکانی در ارتباطاند. بهکارگیری این ابزار با امکان استفاده در شبکههای اطلاعرسانی جهانی، یکی از زمینههای مناسب و مساعد در جهت معرفی توانها و استعدادهای کشور در سطح جهانی است.گسترش روزافزون شبکه کاربران این سیستمها از جمله نکات اساسی است که می تواند به قابلیتها و تواناییهای این سیستم بیفزاید.
در حال حاضر از این سیستمها بسته به نیازهای هر منطقه یا کشور در بخشهای مختلف (مانند مطالعات زیستمحیطی، برنامهریزی شهری و شهرداری، خدمات ایمنی شهری، مدیریت حمل و نقل و ترافیک شهری، تهیه نقشههای پایه، مدیریت کاربری اراضی، خدمات بانکی، خدمات پستی، مطالعات جمعیتی و مدیریت تأسیسات شهری مثل برق، آب،گاز، و..) استفاده میشود و با گذشت زمان و توسعه سیستمها، کاربرد جیآیاس به کلیه بخشهای مرتبط با زمین گسترش یافته است.
مطالعه حاضر نیز با در نظرگرفتن مسائل فوق درصدد است ضمن معرفی بخشی از توانها و مزایای این سیستم در دسترسی سریع به اطلاعات، تحلیل اطلاعات به طور یکجا و با هم، بهنگامسازی، دقت و سرعت بالای عمل، و ....، کاربرد و نحوه استفاده از آن را در ارتباط با مجموعه اطلاعات علوم زمین موجود در پایگاههای اطلاعاتی مرکز اطلاعات و مدارک علمی ایران مورد بررسی قرار دهد و ارزیابی نماید.
تاریخچه ایجاد جیآیاس (مروری بر مطالعات انجام شده)
اولین نمونه از یک جیآیاس ملّی، جیآیاس کانادا[2] است که از اواخر1960 به این طرف به صورت پیوسته مورد استفاده قرار گرفته است. در دهههای 1970 و1980 میلادی پیشرفتهای قابل ملاحظهای در فناوری جیآیاس به وجود آمد، به طوری که عبارت «سیستم اطلاعات جغرافیایی» در مورد مجموعه ابزارهایی برای تحلیل و نمایش نقشهها و ادغام فنون و شیوههای آماری و نقشهای و کاربرد فراگیرتر آن، بویژه برای تحلیل تأثیرات وخط مشیهای دولتی به کارگرفته شد. در حالیکه سابقه فناوری جیآیاس درکشورهای غربی ازجمله کانادا وآمریکا به بیش از40 سال میرسد، فناوری جیآیاس در اغلب کشورهای جهان سوم بسیار جوان میباشد. از ویژگیهای جیآیاس در کشورهای غربی هماهنگی بین فناوری و آموزش وکاربرد آن است، درحالی که درکشورهای جهان سوم، ورود فناوری قبل از آموزش و مهارتاندوزی مربوط به آن صورت میگیرد. در ایران، اولین مرکزی که به طور رسمی استفاده از سیستم اطلاعات جغرافیایی را در کشور آغاز کرد سازمان نقشهبرداری کشور بود که در سال 1369 براساس مصوبه مجلس شورای اسلامی، عهدهدار طرح به کارگیری این سیستم شد. این سازمان در حال حاضر مشغول تهیه نقشههای توپوگرافی 1:25000 از عکسهای هوایی با مقیاس 1:40000 میباشد و این فرصتی است برای تبدیل این نقشهها به ساختارهای رقومی و تأسیس پایگاه توپوگرافی ملی[3] که نیازهای کاربران را در زمینه جیآیاس برآورده میکند.
در همین راستا «شورای ملی کاربران سیستمهای اطلاعات جغرافیایی»[4] به منظور سیاستگذاری، برنامهریزی و هماهنگسازی فعالیتها در زمینه جیآیاس، تحلیل نیازمندیها و همچنین بهرهبرداری شایسته از کلیه ظرفیتهای علمی، فنی و نیروی انسانی در راستای ایجاد و به کارگیری جیآیاس و با توجه به وظایف سازمان نقشهبرداری کشور در خصوص تدوین و ایجاد سیستمهای اطلاعات جغرافیایی ملی، در دی ماه 1372 تأسیس گردیده است.
دسته بندی | زمین شناسی |
بازدید ها | 23 |
فرمت فایل | doc |
حجم فایل | 1467 کیلو بایت |
تعداد صفحات فایل | 24 |
1- تعریف
برج های خنک کننده در اصل دستگاههایی هستند که جهت بازیافت آب استفاده می شوند.
2-دسته بندی:
برجهای خنک کننده به لحاظ نوع تماس آب و هوا به دو گروه برجهای تر(مدار باز)و برجهای خشک (مدار بسته)تقسیم میشوند .
برجها از نوع حرکت هوا به دو نوع مکش طبیعی (Natural darft ) و مکش اجباری (Mechainical darft )دسته بندی می شوند .
تقریباً بیش از 90 % برجهای خنک کننده از نوع برجهای تر (wet cooling tower ) می باشند که خود به گروههای ذیل تقسیم میگردند.
جریان متقابل (counter flow )
جریان متقاطع (cross flow )
در سالهای اخیر، بر خلاف گذشته برجهای خنک کننده از نوع جریان متقابل بعلت حجم کمتر و راندمان بهتر مقبولیت بیشتری پیدا کرده اند.
3- عملکرد کلی برج خنک کننده :
اثر خنک کنندگی انتقال حرارت محسوس (sensible heat transfer ) آب و هوا در برجهای خنک کننده بسیار ناچیز است و تقریباً اثر خنک کنندگی تماماً از تبخیر قسمتی از آب اسپری شده در برج بدست می آید که حرارت لازم برای تبخیر را از آبهای باقیمانده در برج تأمین میکند و در نتیجه درجه حرارت آب باقیمانده تنزل می یابد . بخار حاصل از تبخیر آب نیز توسط پروانه از برج خارج میشود .
عواملی که در ظرفیت برج تاثیر گذار هستند :
1-3- با کاهش دمای مرطوب محیط (Environment web bulb temperature ) با کاهش دمای رطوبت محیط قدرت خنک کنندگی برج خنک کننده افزایش می یابد
2-3- افزایش سطح تماس باعث افزایش ظرفیت خواهد شد.
3-3- افزایش زمان تماس آب و هوا باعث افزایش ظرفیت خواهد شد.
4-3-سرعت پایین هوای عبوری از سطوح خنک کننده با ثابت نگهداشتن دبی آن باعث افزایش راندمان برج خواهد شد.
4- اصطلاحات
اصطلاحات مورد نیازدر برج خنک کننده به شرح ذیل می باشند:
1-4- دامنه خنک کنندگی (Range ) : کاهش درجه حرارت آب در عبور از برج (اختلاف بین دمای ورودی و خروجی آب ) را دامنه خنک کنندگی مینامند.
ظرفیت یک برج خنک کننده را میتوان با اندازه گیری دبی آب برج و دامنه خنک کنندگی از معادله زیر بدست آورد .
( °K )دامنه خنک کنندگی ×(Kj/kg°k )19/4 ×(L/s )دبی آب =(kw ) بار برج
2-4- تقرب (Approach ): اختلاف بین دمای آب خروجی از برج و دمای مرطوب هوای ورودی به برج را تقرب (Approach ) می نامند . از نظر تئوریک پایین ترین دمای قابل حصول برای آب در برج ، دمای مرطوب هوای ورودی است ، که در این حالت راندمان برج 100% می شود . با توجه به اینکه عملاً راندمان 100% امکان پذیر نمی باشد و برای رسیدن به دمای مرطوب محیط می بایست از برج خنک کن خیلی بزرگتر استفاده نمود و اینکار توجیه اقتصادی ندارد ، معمولاً دمای خروجی از برج 4 الی 5 درجه سانتیگراد بیشتر از دمای هوای ورودی به برج در نظر گرفته می شود .
3-4 دبی (water flow rate ) : میزان آب در گردش در واحد زمان را دبی می نامند .
5- اصول عملکرد برجهای فایبر گلاس تهویه آذر نسیم :
سیستم اتوماتیک چرخش آب پخش کن (Rotating sprinkler )آب داغ را بصورت یکنواخت بر روی تمام سطوح خنک کننده پخش میکند . هوای خشک بطور همزمان در جهت مخالفت ریزش آب بطرف بالا مکش و باعث تبخیر قسمتی ار آب داغ و خنک شدن باقیمانده آب میشود .آب خنک شده در تشت (Basin )جمع شده و از طریق چاهک (Sump ) به منبع حرارت چرخش مجدد پمپ می شود .
1-5-طراحی انتقال حرارت
برجهای خنک کننده فایبرگلاس تهویه آذر نسیم بر اساس جریان متقابل (Counter flow )طراحی و بهترین کارایی را دارند.هوا از داخل سطوح خنک کننده (Fill )در تضاد با آب داغ عبور میکند . هوای خشک و سرد در پایین سطوح خنک کننده در تماس با آب سرد در می آید که باعث حداکثر تبخیر و انتقال حرارت در سطوح خنک کننده میشود . شیارهای سطوح خنک کننده طوری اختیار شده اند که امکان گرفتگی آنها وجود ندارد و بیشترین سطح را برای واحد حجم در اختیار ما قرار میدهند .آب بصورت لایه نازکی در سطوح خنک کننده حرکت می کند و حداکثر سطح را برای خنک شدن با هوای عبوری ایجاد میکند . شیارها دارای زاویه میباشند و سطوح بصورت معکوس روی هم چسبانده می شوند .
2-5- توزیع آب و هوا
آب پخش کن چرخشی (Rotating water sprinkler ) آب داغ را بصورت ذرات اسپری شده در آورده و بطور یکنواخت بر تمام سطوح خنک کننده پخش می کند که این یکنواختی پخش آب برای برجهایی که با نازل کار میکنند امکان پذیر نمیباشد . ضمناً این برجها بعلت داشتن حرکت چرخشی آب پخش کن نیازی به المیناتورهای معمولی ندارد وباید در نظر داشت که در برجهای مکعبی ، الیمانتور باعث افت فشار میشود .
برجهای خنک کننده مدور آذر نسیم با دهانه مکش پروانه بشکل مخروطی هوا را بصورت یکدست از تمام سطوح خنک کننده مکش و حداقل افت فشار را دارد . بخصوص که افت فشار المیناتور که در برجهای دیگر وجود دارد نیز در این برجها حذف میگردد .
6- قدرت الکتروموتور فن برجها به سه عامل بستگی دارد:
الف- مقدار دبی هوا
ب- افت فشار
ج- راندمان پره های فن
برای دبی هوا یکسان ، برجهای تهویه آذر نسیم دارای افت فشار کمتر و راندمان بهتر پره های فن می باشد که این امر باعث شده تا قدرت الکتروموتور به حداقل رسیده و هزینه های بهره برداری را کاهش دهد . دهانه گشاد هوا با سرعت کم هوا ، افت فشار کمتر را سبب می شود .
برجها از نوع مکش اجباری می باشند و پروانه در وضعیت ایده آل قرار میگیرد و هوا را با سرعت زیاد به بیرون پرتاب می کند و امکان برگشت هوای مرطوب خروجی به مکش برج منتفی است .
7-هد پمپ
سیستم چرخشی آب در برجهای فایبر گلاس تهویه آذر نسیم ، قسمت قابل توجه در طراحی آن می باشد . سوراخهایی با قطر بزرگ در لوله ها ، جریان آهسته آب با افت فشار ناچیز باعث می شوند و همچنین ریسک گرفتگی سوراخها وجود ندارد. افت فشار شامل هد استاتیکی اسپری یا ارتفاع لوله از سطح آب داخل تشت به اضافه افت فشار در سیستم دورانی آب می باشد .
8- عمر دستگاه
موقعی که از برج خنک کن فایبر گلاس (FRP )صحبت می شود ، نباید آنرا با ورق های فایبر گلاس موجدار که برای مسقف کردن پارکینگ و امثال آن استفاده می شود اشتباه گرفت . ورقهای فایبرگلاس که برای مسقف کردن استفاده می شوند از درجه پایین رزین بدون استفاده از پوشش ضد اشعه ماوراءبنفش ساخته می شوند و ظرف مدت کوتاه چند ساله الیاف بصورت تار موهایی از ورق بیرون زده و ترکهای زیادی در سطح کار دیده می شود. قطعات فایبرگلاس در برجهای تهویه آذر نسیم با ژلکت Neopentyl Glycol پوشش داده می شوند که علاوه بر اینکه رنگ دانه های آن ، رنگ بدنه ذاتی برج را بدست می دهد کاملاً در مقابل اشعه ماوراء بنفش مقاوم می باشد . بدین دلیل برجها نیازی به رنگ بدنه ندارند.
به هر حال در صورتیکه خریداران ما بخواهند رنگ را تغییر دهند این عمل با نقاشی کردن برج امکان پذیر است .
در مقایسه با برجهای چوبی که خیلی زود می پوسند و برجهای فلزی که زنگ میزنند و هزینه تعمیرات را بالا می برند ، برجهای فایبر گلاس مزیت فوق العاده ای در صرفه جویی تعمیرات دارند که زمینه یک سرمایه گذاری هوشمندانه را ایجاب می کند .
9- الکتروموتور کوچکتر
توان مصرفی پایین الکتروموتور در برجهای خنک کننده تهویه آذر نسیم هزینه مصرف انرژی سالیانه را کاهش چشمگیری می دهد
10-مزایای برجهای خنک کننده فایبر گلاس مخروطی شرکت تهویه آذر نسیم:
1-10 – لایه های قوی و ضد آب فایبر گلاس با رزین ایزو فتالیک (ISO ( باعث کاهش ارتعاشات و افزایش عمر برج می شود .
2-10- ژلکت ضد اشعه ماوراء بنفش (NPG )glycol Neopentyl باعث ماندگاری رنگ ، نمای زیبا و عمر طولانی دستگاه می شود .
3-10- چاهک (sump ) فایبر گلاس کاملاً ضد خوردگی
4-10- صفحه پروانه ، آب پخش کن از جنس آلومینیوم دایکاست و پروانه از جنس پلی آمید ، فایبر گلاس یا آلومینیوم دایکاست با بالانس استاتیکی و دینامیکی حرکت آرام سیستم محرکه برج را امکان پذیر ساخته و عمر طولانی یاتاقانها و الکتروموتور را فراهم می سازد .
5-10- سطوح خنک کننده PVC از مواد دست اول و بدون استفاده از مواد آسیابی و بازیافت ساخته می شوند و دارای گرید دارویی می باشند .(Anti bacterial)
6-10 – الکتروموتورهای مورد استفاده با کلاس حفاظتی IP55 و عایق حرارتی کلاس F می باشند.
7-10- گارانتی 5 ساله قطعات در برابر عیوب ناشی از ساخت (به استثنای اقلام مصرفی نظیر تسمه )و حتی گارانتی الکتروموتور شما را از یک خرید درست مطمئن می کند .
11- قطعات برج های خنک کننده فایبر گلاس تهویه آذر نسیم
1-11- بدنه (casing )
قطعات بدنه توسط پیچ و مهره ضد زنگ بهم متصل و بدنه یکپارچه برج را تشکیل می دهند . بدنه ، سطوح خنک کننده PVC را محصور کرده و جریان هوای مکشی را بر روی سطوح خنک کننده امکان پذیر می باشد . شکل خاص مخروطی بدنه باعث کاهش اصطکاک جریان هوا و به الگوی جریان هوا کمک می کند .
بدنه برج طوری طراحی شده که تحمل باد با سرعت m/sec 21 و ارتعاشات ناشی از موتور و سیستم های محرکه برج را دارد .
بدنه برج بعلت ساخته شدن از رزین ایزوفتالیک (ISO ) مقاومت بالایی در مقابل ضربه دارد و براحتی در محل بهره برداری آسیب نمی بیند ژلکت نوپنتیل گلیکل (NPG ) باعث اطمینان از ماندگاری نما و رنگ طولانی برج در مقابل اشعه مستقیم نور خورشید می شود .
بدنه جهت حمل راحت بصورت قابل حمل ساخته می شوند و در سایت مونتاژ خواهند شد .
تشت (Basin )
تشت جمع آوری آب پس از ریختن از پکینگها و هدایت آن بطرف چاهک (sump ) استفاده میشود ، علاوه براین تشت بعنوان منبع آب نیز عمل می کند . تشت نیز از جنس فایبر گلاس با مشخصات ساختاری بدنه میباشد.
3-11- چاهک
چاهک در برجهای بزرگ در زیر و وسط تشت قرار گرفته و در مدلهای کوچکتر در زیر و در حاشیه تشت قرار دارد و تمام اتصالات ورود و خروج ،تخلیه ،پرکن (فلو تر) و سرریز روی آن قرار دارد. چاهک در پایین ترین سطح قرار گرفته و همیشه پر از آب می باشد و خطر هوا گرفتگی پمپ هرگز وجود ندارد . چاهک کاملاً با مواد فایبر گلاس ساخته می شود و خطر هر گونه پوسیدگی و نشتی از بین می رود .
تخلیه در پایین ترین سطح قرار دارد که بتوان به سادگی آشغال های جمع شده را از برج تخلیه نمود و یا آب برج را خالی کرد .
4-11- استراکچر برج (Tower Structure )
استراکچر برج که بدنه ، تشت و موتور و غیره را ساپورت می کند از جنس فولاد (MS ) می باشد که گالوانیزه گرم (HOT DIP ) شده و مقاوم در مقابل خوردگی است .
5-11- سطوح خنک کننده (Fill )
سطوح خنک کننده طوری طراحی شده اند که بیشترین سطح تماس آب و هوا حاصل و بهترین امکان انتقال حرارت و جرم صورت پذیرد و بیشترین سطح را برای واحد حجم در اختیار ما قرار می دهد . توزیع یکنواخت هوا در سطح مقطع این مهم امکان پذیر است . سطوح خنک کننده از ورقهای PVC دست اول با گرید داروئی و از نوع شفاف با ضخامت مناسب و پوشش ضد اشعه ماوراء بنفش و ضد باکتری ساخته می شوند .
6-11- فن / پره های فن ( Fan / fan blades )
فن های چند پره آکسیال ، قابل تنظیم ، ضد خوردگی و سبک ، برای جابجایی حجم زیادی از هوا با حداقل مصرف انرژی و حداقل صدا طراحی شده اند که از مشخصه های بارز برجهای تهویه آذر نسیم می باشند . فن ها بالانس استاتیکی و دینامیکی شده و باعث حرکت آرام و عمر بیشتر یاتاقانها میگردند . فن های فایبرگلاس ایرفویل بنا به درخواست خریدار قابل ارائه می باشد ، که این فن ها صدای فوق العاده کم و مقاومت خیلی خوب در مقابل خوردگی دارند .
7-11- الکتروموتور فن ( Fan drive motor )
الکتروموتور بر روی برجهای خنک کننده تهویه آذر نسیم همگی دارای کلاس حفاظتی 55 IP و عایق حرارتی کلاس F می باشند .
دسته بندی | زمین شناسی |
بازدید ها | 51 |
فرمت فایل | doc |
حجم فایل | 52 کیلو بایت |
تعداد صفحات فایل | 6 |
برج تقطیر
مقدمه
تقطیر ، در واقع ، جداسازی فیزیکی برشهای نفتی است که اساس آن ، اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج میشود. اولین پالایشگاه تاسیس شده در جهان ، در سال 1860 در ایالت پنسیلوانیای آمریکا بوده است. نفت خام ، از کورههای مبدل حرارتی عبور کرده، بعد از گرم شدن وارد برجهای تقطیر شده و تحت فشار و دما به دو صورت از برجها خارج میشود و محصولات بدست آمده خالص نیستند. انواع برجهای تقطیر در زیر توضیح داده میشوند.
برجهای تقطیر با سینی کلاهکدار
در برجهای تقطیر با سینی کلاهکدار ، تعداد سینیها در مسیر برج به نوع انتقال ماده و شدت تفکیک بستگی دارد. قطر برج و فاصله میان سینیها به مقدار مایع و گاز که در واحد زمان از یک سینی میگذرد، وابسته است. هر یک از سینیهای برج ، یک مرحله تفکیک است. زیرا روی این سینیها ، فاز گاز و مایع در کنار هم قرار میگیرند و کار انتقال ماده از فاز گازی به فاز مایع یا برعکس در هر یک از سینیها انجام میشود. برای اینکه بازدهی انتقال ماده در هر سینی به بیشترین حد برسد، باید زمان تماس میان دو فاز و سطح مشترک آنها به بیشترین حد ممکن برسد.
بخشهای مختلف برج تقطیر با سینی کلاهکدار
بدنه و سینیها: جنس بدنه معمولا از فولاد ریخته است. جنس سینیها معمولا از چدن است. فاصله سینیها را معمولا با توجه به شرایط طراحی ، درجه خلوص و بازدهی کار جداسازی بر میگزینند. در بیشتر پالایشگاههای نفت ، برای برجهای تقطیر به قطر 4ft فاصله میان 50 - 18 سانتیمتر قرار میدهند. با بیشتر شدن قطر برج ، فاصله بیشتری نیز برای سینیها در نظر گرفته میشود.
سرپوشها یا کلاهکها: جنس کلاهکها از چدن میباشد. نوع کلاهکها با توجه به نوع تقطیر انتخاب میشود و تعدادشان در هر سینی به بیشترین حد سرعت مجاز عبور گاز از سینی بستگی دارد.
موانع یا سدها: برای کنترل بلندی سطح مایع روی سینی ، به هر سینی سدی به نام "وییر" (Wier) قرار میدهند تا از پایین رفتن سطح مایع از حد معنی جلوگیری کند. بلندی سطح مایع در روی سینی باید چنان باشد که گازهای بیرون آمده از شکافهای سرپوشها بتوانند از درون آن گذشته و زمان گذشتن هر حباب به بیشترین حد ممکن برسد. بر اثر افزایش زمان گذشتن حباب از مایع ، زمان تماس گاز و مایع زیاد شده ، بازدهی سینیها بالا میرود.
برجهای تقطیر با سینیهای مشبک
در برجهای با سینی مشبک ، اندازه مجراها یا شبکهها باید چنان برگزیده شوند که فشار گاز بتواند گاز را از فاز مایع با سرعتی مناسب عبور دهد. عامل مهمی که در بازدهی این سینیها موثر است، شیوه کارگذاری آنها در برج است. اگر این سینیها کاملا افقی قرار نداشته باشند، بلندی مایع در سطح سینی یکنواخت نبوده و گذر گاز از همه مجراها یکسان نخواهد بود.
خورندگی فلز سینیها هم در این نوع سینیها اهمیت بسیار دارد. زیرا بر اثر خورندگی، قطر سوراخها زیاد میشود که در نتیجه مقدار زیادی بخار با سرعت کم از درون آن مجاری خورده شده گذر خواهد کرد. و میدانیم که اگر سرعت گذشتن گاز از حد معینی کمتر گردد، مایع از مجرا به سوی پایین حرکت کرده بازدهی کار تفکیک کاهش خواهد یافت.
برجهای تقطیر با سینیهای دریچهای
این نوع سینیها مانند سینیهای مشبک هستند. با این اختلاف که دریچهای متحرک روی هر مجرا قرار گرفته است. در صنعت نفت ، دو نوع از این سینیها بکار میروند:
انعطاف پذیر: همانطور که از نام آن برمیآید، دریچهها میتوانند بین دو حالت خیلی باز یا خیلی بسته حرکت کنند.
صفحات اضافی: در این نوع سینیها ، دو دریچه یکی سبک که در کف سینی قرار میگیرد و دیگری سنگین که بر روی سه پایهای قرار گرفته ، تعبیه شده است. هنگامی که بخار کم باشد، تنها سرپوش سبک به حرکت در میآید. اگر مقدار بخار از حد معینی بیشتر باشد، هر دو دریچه حرکت میکنند.
مقایسه انواع گوناگون سینیها
در صنعت نفت ، انواع گوناگون سینیها در برجهای تقطیر ، تفکیک و جذب بکار برده میشوند. ویژگیهایی که در گزینش نوع سینی برای کار معینی مورد توجه قرار میگیرد، عبارت است از: بازدهی تماس بخار و مایع ، ظرفیت سینی ، افت بخار در هنگام گذشتن از سینی ، زمان ماندن مایع بر روی سینی ، مشخصات مایع و ... . چون در صنعت بیشتر سینیهای کلاهکدار بکار برده میشوند، برای مقایسه مشخصات سینیهای دیگر ، آنها را نسبت به سینیهای کلاهکدار ارزیابی میکنند.
برجهای انباشته
در برجهای انباشته ، بجای سینیها از تکهها یا حلقههای انباشتی استفاده میشود. در برجهای انباشته حلقهها یا تکههای انباشتی باید به گونهای برگزیده و در برج ریخته شوند که هدفهای زیر عملی گردد.
ایجاد بیشترین سطح تماس میان مایع و بخار
ایجاد فضا مناسب برای گذشتن سیال از بستر انباشته
جنس مواد انباشتی
این مواد باید چنان باشند که با سیال درون برج ، میل ترکیبی نداشته باشند.
دسته بندی | زمین شناسی |
بازدید ها | 23 |
فرمت فایل | doc |
حجم فایل | 47 کیلو بایت |
تعداد صفحات فایل | 16 |
منابع آب و بحران منابع آب
طی سالهای اخیر همواره با بحثهای کمبود آب و هشدار مواجه باشیم به طوری که در شرایط فعلی و با افزایش ساختوساز در ارتفاعات 800 تا 1200 متری تهران، بحث کمبود منابع آبی برای شهر تهران جدیتر شده است.
در بحث آب شهرها، همواره با چالشهای مختلفی مواجه بودهایم که اگر خواهان دستهبندی این چالشها باشیم باید به موارد ذیل توجه کرد:1 - در توسعه شهرنشینی و افزایش جمعیت شهری آنچه که باید همواره مدنظر قرار گیرد بحث کیفیت آب است و عمدتاً منابع آبی از لحاظ کمیت و کیفیت مورد بررسی قرار میگیرند ولی با این حال بحث کیفیت نکتهای است که در بیشتر مواقع از کمیت و وجود منابع غنی آبی بیشتر مورد توجه مسوولان قرار گرفته است.2 - همچنین نزولات جوی و بارندگیها نیز نقش اساسی و بنیادی در بحث تامین منابع آبی دارند و طبیعتاً در سالهایی که بارندگی کاهش مییابد به دلیل اینکه منبع اصلی تامین آب تازه و سالم و بهداشتی کاسته میشود برخی از شهرها که منبع اصلی تامین آب آنها نزولات جوی است با مشکلات عدیدهای مواجه میشوند و در تنگنای کمآبی قرار
می گیرند .
3 - چالش دیگر، سیستم آبرسانی و توزیع آب است. هنگامی که بافت شهرها از حالت سنتی تغییر میکند باید شبکه آبرسانی نیز تغییر کرده و بازسازی شود ولی طی سالهای گذشته همزمان با تغییر بافت سنتی شهرها، بافت شبکه آبرسانی تغییر نکرده و این امر باعث شده تا در توزیع آب در چنین مناطقی با مشکل مواجه شویم.4 - علاوه بر این موارد، جمعیت حاشیهنشین در شهرهای بزرگ و مخصوصاً کلانشهر تهران به دلیل استقرار حاشیهنشینها در مناطق خارج از محدوده تامین آب، این مناطق به خاطر عدم وجود زیرساختهای لازم برای آبرسانی به آن مناطق با کمبود آب یا نارسایی در آبرسانی مواجه هستند.بنابراین آنچه که میتوان بیان داشت آن است که برای داشتن آب با فشار متعادل و دسترسی همیشگی در شهرها، وجود نزولات جوی، ارائه خدمات در محدوده شهری و
شبکه منظم و مشخص تامین و توزیع آب لازم و ضروری است.البته تامین و توزیع منابع مالی نیز از عوامل کمککننده است چرا که تامین و ایجاد شبکه آبرسانی در مناطق شهری و بازسازی بافتهای فرسوده به اختصاص منابع لازم نیاز دارد که باید از سوی دولت تامین و تخصیص یابد.
دید کلی
بسیاری از جوامع یا افراد ، قدر نعمتهای موجود را نمیدانند و این قدرنشناسی را بهره برداری نادرست از این نعمتها نشان میدهند. یکی از این نعمتهای بزرگ خداوند ، آب است. چون منابع آب محدود است، باید در استفاده از آنها دقت کافی به عمل آید. در بخش کشاورزی ، عوامل زیادی سبب هدر رفتن مقدار زیادی از آب
میشود که بر فراز آنها عبارتند از:آبیاری مزارع در زمان نامناسب
آبیاری به هنگام ظهر که گرمای هوا سبب افزایش تبخیر میشود، مقدار زیادی از آب را هدر میدهد.
غرقابی کردن زمین کشاورزی و نفوذ دادن آب به اعماق زمین
آب زیاد دادن به زمین ، سبب میشود که خاک تا عمق زیادی از آب پر شده ، فضاهای خالی آن پر شود.
آلودگی آبها
بوسیله سموم دافع آفات گیاهی و یا ریختن کودهای شیمیایی ، آبها آلوده میشوند.
تامین آب آشامیدنی شهر و روستا
مردم به آب سالم برای آشامیدن و پرداختن به امور بهداشتی نیاز دارند. تامین آب با صرف هزینه و سرمایه گذاری زیاد انجام میشود. در تامین آب سالم و مناسب ، به مراحل
زیرین پرداخته میشود:کشف منابعی که برای آشامیدن و سایر مصارف مردم مناسب باشد.
جمع آوری آبهای سطحی یا بهره برداری از آبهای زیرزمینی
تصفیه آب برای از بین بردن آلودگیهای احتمالی
انتقال آب از محل تصویه به محلهای مصرف (شهر و روستا)
مراقبت از تاسیسات ، کانالها و لولههای انتقال آب
همه موارد اخیر به تخصص ، هزینه و زمان نیازمند است. بنابراین ، در مناطق شهری و روستایی آبهای آشامیدنی لوله کشی شده یا تصفیه شده با صرف مخارج زیادی فراهم میشود و باید در استفاده از آنها دقت کافی به عمل آید. زندگی شهرنشینی و تراکم جمعیت در شهرها و توجه به امور بهداشتی آنها ، سبب شده است که نیاز بیشتری به آب آشامیدنی سالم احساس شود. تامین آب مناطق شهری و روستایی گاهی سبب کاهش مورد نیاز کشاورزی و باغداری میشود.
بهره برداری از آب در صنایع
در اوایل قرن بیستم ، از کل مصارف آب در جهان ، حدود 6% در بخش صنایع مصرف میشد. هم اکنون این رقم 4.5 برابر شده است. در ایران فقط 5% از کل مصرف آب مربوط به صنایع میباشد. آبی که به صنایع میرسد، معمولا خیلی زود کیفیت خود را از دست میدهد یا گرمای آن زیاد میشود و یا آلودگی شیمیایی و میکروبی پیدا میکند. گرمای آب مورد نیاز صنایع را میتوان با برجکهای خنک کننده گرفت و آب را دوباره یا چندباره مورد استفاده قرار داد. اما رفع آلودگی شیمیایی یا
دسته بندی | زمین شناسی |
بازدید ها | 16 |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 5 |
7 ـ بازیافت مواد
یکی از مهمترین اهداف در پردازش مواد زاید جامد، بازیافت و جداسازی ترکیبات با ارزش از داخل زباله و تبدیل آن به مواد اولیه میباشد. امروزه تکنیکهای مختلفی در جهان برای تفکیک و جداسازی اجزای ترکیبی مواد زاید جامد توسعه یافته اند که از مهمترین این تکنیکها میتوان به دو روش عمده تفکیک از مبدأ تولید و تفکیک در مقصد که ذیلا به آن پرداخته خواهد شد، اشاره کرد :
الف ـ تفکیک از مبدأ تولید
روش جداسازی و تفکیک در مبدأ یکی از مهمترین و کم هزینه ترین روشهای جداسازی و تفکیک مواد زاید، محسوب میشود.
در این روش، زایدات قابل بازیافت پس از جداسازی در منزل جهت ذخیره سازی به ظروف ویژه ای که بدین منظور در محیطهای مسکونی، نصب گردیده اند، منتقل و سپس توسط سرویسهای ویژه و منظم از محل تولید به محل تبدیل، حمل میگردند. یکی از محسّنات این روش عدم اختلاط و آلودگی مواد زاید قابل بازیافت با هم و در نتیجه عدم نیاز به ضدعفونی و شستشوی مضاعف و همچنین صرف هزینه های مازاد است.
ب ـ تفکیک در مقصد
روش جداسازی و یا تفکیک در مقصد نیز یکی دیگر از روشهای بازیافت و جداسازی مواد زاید به حساب میآید. در این روش زایدات قابل بازیافت پس از ورود به مراکز انتقال و یا دفع به توسط روش سنتی و با صرف نیروی انسانی و یا توسط انواع سیستمهای مکانیزه همانند سرند، آهن ربا، تونل باد و . . . از داخل مواد تفکیک و جداسازی میگردند. بطور کلی هر کارخانه بازیافت و تبدیل مواد زاید جامد از سه قسمت اساسی زیر تشکیل شده است:
1 ـ قسمت دریافت مواد
2 ـ قسمت جداسازی
3 ـ قسمت آماده سازی محصول و تولید
از نظر کلی تمام موادی را که مصرف کنندگان به دور میریزند میتوان بازیابی کرد. در عمل بین کمیت و کیفیت این مواد تفاوت وجود دارد. موادی که برای بازیابی و برگشت به صورت مواد اصلی نامناسب هستند موادی میباشند که عناصر تشکیل دهنده آنها بسیار متفاوت بوده و نامرغوب میباشند. از اینرو مدیریت مواد زاید جامد با دارا بودن اهداف مشخص در مورد مقداری از زباله که باید بازیابی شده و یا به روشهای دیگر دفع تحویل گردد، قادر به ارائه سیستم مشخصی از بکارگیری و استفاده مجدد این مواد خواهد بود. با توجه به میزان مواد تشکیل دهنده زباله، میزان بازیافت آنها نیز در هر کشوری بر حسب سیاست گذاریها و وضعیت اقتصادی و نیاز به منابع تفاوت دارد (7).
در کشور ما با وجود 20 درصد مواد بازیافتی از قبیل کاغذ، کارتن، پلاستیک، شیشه و فلزات و نیز حدود 70 درصد مواد قابل کمپوست اتخاذ سیستم بازیافت از مبدأ یک تحول اساسی در مدیریت مواد زاید جامد خواهد بود. قابل ذکر است که در حال حاضر بازیافت از زباله های بیمارستانی و مراکز بهداشتی ممنوع میباشد.
8 ـ راه کارهای اساسی ویژه بهینه سازی مدیریت مواد زاید جامد شهری
دسته بندی | زمین شناسی |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 18 کیلو بایت |
تعداد صفحات فایل | 9 |
موضوع: بازیافت زباله
خدمات بازیافت زباله در شهر Houston :
_ بازیافت زباله های منازل
_ بازیافت ضایعات حیاط منازل
_ بازیافت ضایعات چوبی
_ BOPA باطری ها، روغن، رنگ، ضدیخ ها
_ جمع آوری زباله های خطرزای خانگی
_ روغن های مصرف شده
_ بازیافت درختچه های کریسمس
_ بازیافت ضایعات الکترونیکی
بازیافت زباله های منازل:
بازیافت زباله های منازل بزرگترین و عمومی ترین برنامه سازمان بازیافت شهرداری Houston است از سال 1990 جمع آوری زباله های بصورت دوهفته ای یکبار و تنها برای منازلی بکار می رفت که دارای جعبه های مخصوص جمع آوری مواد بازیافتی بودند، اما پس از گذشت مدتی علاوه بر 27000 منزلی که دارای جعبه های بازیافتی بودند، 190000 منزل دیگر که برای جمع آوری زباله هایشان از کیسه های آبی رنگ استفاده می کردند نیز به این برنامه اضافه شدند.
پس از مقایسه مزایا و معایب هر دو روش جمع آوری، شهرداری روش سطل های زباله را برگزید و در سال 1991 از سوی شهرداری به 19000 منزلی که از کیسه های آبی استفاده می کردند، سطل های سبز رنگ برای جمع آوری زباله های بازیافتی داده شد.
مواد بازیافتی مورد تایید شهرداری شامل: روزنامه ها، مجلات، کتابچه راهنمای تلفن، قوطی های کنسرو، قوطی های آلومینیومی، کتابچه های تبلیغاتی، مقواهای فشرده شده، بطری های پلاستیکی نوشیدنی و بطری های شیر و آب است که باید جدا از زباله های عادی منزل در سطل های سبز رنگ ریخته شود ، سطل های مذکور در حدود 18 لیتر گنجایش دارند و از 25% پلاستیک بازیافتی و 75% مواد اولیه ساخته می شوند.
روغن های مصرفی نیز از طرف سازمان بازیافت جمع آوری می شوند. برای جمع آوری آنها باید روغن را در ظرف تمیزی ریخته و در کنار سطل زباله قرار داد.
پس از تصویب طرح سطل های سبز رنگ به علت بیشتر بودن حجم آنها برنامه جمع آوری زباله ها از هفته ای یکبار به دوهفته یکبار تغییر کرد، این تغییر جوانب مثبت دیگری مانند جلوگیری از اشتباه در مناطق جمع آوری و صرفه جوِیی در مصرف سوخت و آلودگی را نیز به همراه داشت.
خدمات جمع آوری دوهفته ای برای بخش های مختلف شهر بهتر است زیرا شهروندان می توانند از پر بودن سطل زباله های بازیافتی در روز جمع آوری اطمینان داشته باشند. اطلاعات مربوط به بازیافت مواد توسط پرسنل این حوزه در جلسات شهری، مدارس و بصورت پیامهای بازرگانی در سراسر شهر پخش می شود. علاوه بر این اطلاع رسانی، ماموران این حوزه وظیفه پخش کتاب های راهنما و کتابچه های تبلیغاتی را در هنگام جمع آوری بر عهده دارند.
بازیافت زباله های حیاط منازل:
برنامه آزمایشی بازیافت زباله های حیاط منازل از سال 1993 در این شهر آغاز شد.
متصدیان این برنامه برای یاری رسانی به کارگران مسئول جمع آوری زباله ها در بخش بازیافت اقدام به اضافه کردن ماشین آلات جمع آوری کردند.
زباله های حیاط منازل در حدود 30% کل زباله های این شهر را شامل می شود، که جمع آوری آن برای شهروندان رایگان می باشد.
ضایعات حیاط ها شامل اضافات چمن های کوتاه شده و شاخه های درختان است که پس از بازیافت از آنها کودهای ویژه و کودهای گیاهی تهیه می کنند.
این امر همچنین به ذخیره هزینه های مالی که در محل دفن زباله ها صرف می شود، نیز کمک بسزایی می کند.
دسته بندی | زمین شناسی |
بازدید ها | 48 |
فرمت فایل | doc |
حجم فایل | 41 کیلو بایت |
تعداد صفحات فایل | 30 |
اکولوژی جانوری و پراکنش آنها
هر موجود زنده ای شیوه زندگی مشخصی دارد که به ساختار و فیزیولوژی آن موجود و همچنین محیط زیستی که در آن سکنی گزیده، بستگی دارد. عوامل فیزیکی و بیولوژیکی برای تولید دامنه وسیع و متنوع محیط زیست در نقاط مختلف زمین در حال فعالیت هستند. شرایط در بعضی مناطق استوایی و دریاها تقریبا ثابت هستند، اما در بیشتر نقاط زمین، دما، رطوبت و نور خورشید با توجه به فصول سال تغییر می کنند. این تأثیرات را در مجموع به عنوان اقلیم می شناسند. چرخه زندگی هر گونه کاملا با شرایط آب و هوایی محیط زندگیش سازگار است. هیچ جانوری کاملا مستقل زندگی نمی کند، برعکس، هر کدام بخشی از اجتماع زنده هماهنگی است که اعضای دیگر آن گونه، بسیاری از انواع جانوران و گروه های گیاهان مختلف را در بر می گیرد.
اکولوژی عبارت است از مطالعه علمی روابط میان موجودات زنده و محیط اطراف آنها. پراکنش نیز به مطالعه حضور آنها در زمانها و مکانهای مختلف می پردازد.
اکولوژی
محیط فیزیکی:
گیاهان و حیوانات تحت تأثیر فاکتورهای فیزیکی و شیمیایی زیادی قرار می گیرند. مهمترین آنها عبارتند از: 1) نور خورشید 2) دما 3) آب ( میزان نمک آن ) 4) گازها و مواد معدنی. که هر کدام اهمیت خاصی دارند و اثر آنها بر حیوانات کاملا مشهود است، ولی همگی با هم در رابطه هستند و هیچ کدام مستقل از یکدیگر عمل نمی کنند. خورشید انرژی نورانی را که گیاهان برای فتوسنتز احتیاج دارند، تامین می کند، اما علاوه بر آن محیط زندگی جانوران را نیز گرم می نماید، و همچنین با بالا بردن دمای آب باعث تبخیر آن میگردد. ( که نتیجه آن ریزش برف یا باران است ). دما سرعت تمام واکنشهای شیمیایی را تحت کنترل دارد، که واکنشهای بیوشیمیایی بدن موجودات زنده نیز جزو آن است. آب حلال مواد معدنی مورد نیاز گیاهان، ماده اصلی بدن جانوران و واسطه ای است که بسیاری از موجودات در آن زندگی می کنند.
12-1 نور خورشید: همه انرژی مورد استفاده در اندامها از نور خورشید نشأت می گیرد. انرژی ممکن است از صورتی به صورت دیگر تبدیل شود، اما هیچگاه به وجود نمی آید و از بین نیز نمی رود. گیاهان سبز انرژی نورانی خورشید را جذب می کنند و در نتیجه فعالیت فتوسنتزی، که در کلروفیل های آنها صورت میپذیرد، از دی اکسید کربن و آب، کربوهیدرات تولید می کنند. همچنین در نتیجه این عمل پروتئین ها و اسیدهای چرب نیز به وجود می آیند. انرژی ذخیره شده در این ترکیبات، به عنوان منبع نهایی انرژی، مورد استفاده جانوران قرار می گیرد. این انرژی از هر بخش به بخش دیگر منتقل شده و انرژی لازم را برای ادامه زندگی و فعالیت سیستم های زنده فراهم می نماید. تبادلات انرژی تمام پیشرفتهای فیزیکی و زیستی را بر روی زمین تحت کنترل دارد و عملکرد اندامها را ممکن می سازد.
12-2 دما: تغییرات دما در جهان دامنه بسیار وسیعی دارد و اختلاف دماها به هزاران درجه می رسد، ولی اکثر جانوران روی زمین تنها می توانند در دامنه گرمایی 2- تا 50 درجه سانتیگراد، زندگی کنند. میزان تحمل گرما تحت تأثیر رطوبت است و به مقدار خشکی هوا و یا درصد بخار آب تحت هر دمایی بستگی دارد. به عنوان مثال، در هوای خشک یک کویر، درجه حرارت 32 برای انسان خیلی ناراحت کننده نیست، ولی چنین دمایی با مخلوطی از رطوبت، در مناطق استوایی به سختی قابل تحمل است.
دما بر میزان رشد، تولید میوه و بقای گیاهان، که غذای بسیاری از جانوران مختلف به آنها وابسته است، تأثیر می گذارد.یک دوره طولانی بهار، رشد علوفه را به تأخیر می اندازد و باعث کمبود غذای بسیاری از حشرات، جوندگان و چرندگانی می شود که از آن علوفه تغذیه می کنند. هوای نامناسب در زمان گل دهی، ممکن است سبب کاهش محصولات میوه های سته یا غلات شود، و پرندگان بسیاری را که از آنها تغذیه می کنند، وادار می سازد تا یا در مناطق دیگر برای یافتن غذا سرگردان شوند و یا از گرسنگی بمیرند.
دمای بدن خزندگان، دوزیستان، ماهیها، حشرات و سایر بی مهرگان، فاقد تنظیمات درونی است و یا به میزان بسیار کمی تنظیم شده. مقدار جریانهای شیمیایی در متابولیسم آنها و در نتیجه رشد و فعالیتشان، مستقیما تحت تاثیر دمای محیط است. با گرم شدن هوا سرعت آن افزایش می یابد و با بروز سرما کند میشود. هر گونه دارای محدودیت های دمایی است. بروز یک یخبندان طولانی و یا یک گرمای طاقت فرسا همه آنها را می کشد. اگر دوره یخبندان پس از تخم گذاری و در مرحله ای که لاروها شروع به رشد کرده باشند، ظاهر شود، بسیاری نابود می شوند و جمعیتشان کاهش می یابد. برخی حشرات تخم گذار که لارو یا شفیره دارند، زمستان را با استراحت و کاهش متابولیسم، و یا زندگی در زیر زمین، همراه گیاهان و یا در کف برکه ها و نهرها سپری می کنند تا از یخ زدن خود جلوگیری نمایند. بعضی از حشرات که در یخ گیر کرده اند، احتمالا می توانند به زندگی خود ادامه دهند، زیرا آب بدنشان حاوی مواد محلولی است که مانع یخ زدن آنها می شود. خزندگان و دوزیستان ساکن مناطقی که زمستان های سرد دارد، مجبورند برای اینکه یخ نزنند، در زیر زمین و یا آب به خواب زمستانی فرو روند. بعضی مارهای مناطق خشک غرب که روزها در فصل بهار خارج می شوند، در تابستان برای فرار از گرمای طاقت فرسا به شب بیداری روی می آورند. بیشتر ماهیهای ساکن آبهای شیرین در هوای سرد فعالیتی ندارند. از آنجایی که تغییرات دما در اقیانوسها کمتر است، موجودات آبزی کمتر تحت تأثیر آب و هوا قرار می گیرند، در حالی که بسیاری از انواع ماهیهای آبهای شور، در فصول مختلف سال به شمال و جنوب مهاجرت می کنند.
پرندگان و پستانداران به علت دارا بودن پوشش، به ندرت مستقیما تحت تأثیر دمای محیط قرار میگیرند. اماسرمای شدید زمستان و گرمای تابستان ممکن است فشاری را به آنها تحمیل کند و سبب کاهش مواد غذایی مورد نیازشان شود.بسیاری از پرندگانی که در تابستان در اقیانوس منجمد شمالی و در مناطق معتدل زندگی می کنند، در زمستان به مناطق گرم تر سفر (مهاجرت) می کنند تا بتوانند غذای مورد نیاز خود را به دست آورند. پرندگان، گوزنهای شمالی (elk) و خرس ها که در تابستان ها در کوههای بلند زندگی می کنند( مثلا در شمال غربی آمریکا)، در زمستان به مناطق کم ارتفاع تر مهاجرت می کنند. سنجاب های خاکی و برخی از خفاش های حشره خوار، وقتی نتوانند غذای مورد نیاز خود را مانند فصول گرم سال به دست آورند، در زمستان به استراحت یا همان زمستان خوابی می پردازند. در هنگام خواب زمستانی، دمای بدن این جانوران تا حدی پایین می آید که احساس سرما نکنند. همچنین ضربان قلب و میزان تنفس نیز تا حد زیادی کاهش می یابد و کاهش متابولیسم این جانوران از طریق چربی ذخیره شده در بدنشان (پیش از آغاز این دوره)، جبران می شود.
12-3 آب: بین هوا، خاک و آب و همچنین میان موجودات زنده و محیط زندگی آنها همیشه مبادله آب وجود دارد. به علاوه، آب به شدت بر محیط اطراف موجودات اثر می گذارد. چرخه آب شامل تبخیر، تشکیل ابر، بارندگی، تبخیر سطحی آب و نفوذ به ذاخل زمین میباشد. آب می تواند مقدار بسیار زیادی گرما را ذخیره کند و چون گرمای ویژه آن بسیار بالاست، حجم زیادی از آب در بهار، به آرامی گرم و در پاییز به کندی سرد می شود.(یک کالری گرما لازم است تا یک گرم آب در دمای 15 درجه، 1 درجه افزایش یابد.)
آب بیشترین حجم را در 4 درجه دارد. در زیر این دما آب در حین سرد شدن منبسط می شود و در صفر درجه تبدیل به یخ می گردد. این انبساط آنقدر شدید است که وقتی آب در درز صخره ها منجمد می شود، سنگها شکاف برداشته و ترک می خورند. این امر یکی از مکانیزم هایی است که طی آن خاک تولید میشود. (ترک برداشتن سیلندرهای چدنی در یک اتومبیل، زمانی که پوشش آب آن یخ می بندد، نمونه ای بارز از این نیرو است.) این مسئله که یخ، چون از آن سبک تر است، روی آن شناور می شود، برای موجودات زنده حائز اهمیت است. اما با این ویژگی، یخ میتواند،کف دریاچه ها را شکل دهد و بیشتر بدنه آبهای بزرگ در عمق خود حجم بزرگ و دائمی یخ خواهند داشت. در عوض، آب زمانی که تا 4 درجه سرد می شود، به پایین می رود و آبهای گرم تر به بالا می ایند، به این معنی که جریانهای تبادل گرمایی صورت می گیرد.
دسته بندی | زمین شناسی |
بازدید ها | 11 |
فرمت فایل | doc |
حجم فایل | 1237 کیلو بایت |
تعداد صفحات فایل | 62 |
چکیده
معدن سرب نخلک یکی از قدیمی ترین معادن ایران می باشد . تجهیزاتی که در معدن مورد استفاده قرار می گیرند همگی از نوع ابتدایی بوده و کار با آنها بسیار مشکل می باشد . معدن سرب نخلک از دو قست عمده زیرزمینی و کارخانه تغلیظ تشکیل شده است . در معدن زیرزمینی طی چند سال اخیر ، اخراج رگه های با صرفه مد نظر بوده و راه اندازی و احداث طبقات دیگر معدن از دستور کار حذف شده اند.
بخش زیرزمینی از 6 حلقه چاه تشکیل شده است . چاه شماره 6 برای تهویه ، چاه شماره 5 برای اسکیپ و انتقال مود و چاه شماره 4 جهت آسانسور و رفت و آمد افراد تعبیه شده اند در طبقه 50- متری استخراج به روش انباره ای و در سایر طبقات به روش پر شونده استخراج می شود . در طبقه 200- متری چاه فرعی به عمق 40 متر جهت آبکشی حفر شده است . آب توسط دو پمپ کف کش به طبقه 200- متری و از آنجا توسط 2 پمپ سانتریفوژ به سطح زمین منتقل می شود که آب کارخانه تغلیظ از این راه به دست می آید.
تهویه معدن طبیعی ، آتشباری بوسیله دینامیت و چالزنی با دستگاه پرفراتور انجام می شود . ترابری در کارگاه استخراج بوسیله فرغون و بیل و در تونل های باربری اصلی توسط واگن انجام می شود . کارخانه تغلیظ در نزدیکی معدن قرار دارد . محصول شامل دو قسمت است . محصول جیک با عیار 54 % و محصول فلوتاسیون با عیار 65 % است که در پایان با هم مخلوط شده و به عنوان کنسانتره با عیار حدود 60 % انبار می شود .
فصل اول:
اکتشاف و زمین شناسی
1-1 تاریخچه و موقعیت جغرافیایی
معدن سرب نخلک در فاصله 120 کیلومتری شمال شرقی نائین و 50 کیلومتری شمال شرقی انارک در حاشیه کویر مرکزی ایران واقع شده است . در بخش شرقی یک رشته کوه منفرد و با طول و عرض جغرافیایی'50 ،053 و '34 ،033 قرار دارد . آب و هوای منطقه گرم و خشک می باشد که درجه حرارت در تابستان در سایه به 048 و در زمستان گاهی تا014-می رسد . بلندترین قله آن بنام کوه قلعه بزرگ حدود 1440 متر از سطح دریا ارتفاع دارد . لیکن عملیات استخراج عمدتاً در بخش شمال شرقی معدن در ارتفاع حدود 1000 متر از سطح زمین تا 815 متر طبقه 240- متری صورت می گیرد . معدن با شهرستان نائین بوسیله یک جاده آسفالته ارتباط دارد . بر طبق نظریه کارشناسان قدیمی و جدید ، معدن سرب نخلک از 2000 سال قبل مورد بهره برداری قرار گرفته و این موضوع با کشف ابزار آلات ابتدایی سنگی و آهنی در کارگاههای قدیمی تایید می شود . تعداد این کارگاههای قدیمی حدود 300 عدد می باشد که این تعداد زیاد ، نشان دهنده شدت عملیات استخراجی در گذشته می باشد . کارهای سطحی قدیمی به عنوان یک قاعده دارای شکل شیار مانندی هستند و معمولاً در امتداد قسمت های پر عیار رگه ها کنده شده اند ، در حالیکه رگه های کم عیار و کانه های پراکنده در دیوارها و ستون ها به صورت دست نخورده باقی مانده اند شدت استخراج در نواحی جنوبی چاه شماره 1 که قسمت های پر عیار مواد معدنی بر اثر فرسایش عریان شده ، بیشترین حد را داشته است . در حال حاضر در معدن نخلک 6 حلقه چاه موجود می باشد . تعداد زیادی کارهای قدیمی در فاصله چاههای شماره 1 تا 5 و نیز نواحی شمال غربی چاه 5 وجود دارد . چاه شماره 4 مخصوص آسانسور و رفت و آمد افراد ، چاه شماره 5 جهت اسکیپ و چاه شماره 6 جهت تهویه تعبیه شده اند . تقریباً تمام مواد معدنی پر عیار در این ناحیه از سطح خورده شده و تعدادی از کازگاهها به شکل سینوس و یا عرض کم تا طبقه 125- متری نیز ادامه یافته است . بر طبق اطلاعات موجود کانی سازی تا عمق قابل توجهی گسترش یافته است . در مناطق جنوبی تعداد کارگاههای قدیمی کم است . تعدادی از رگه ها در تپه های کم ارتفاع شمالی در ناحیه کلاه نمدی وجود داشته که استخراج شده است . در دهه های گذشته کانسار از طریق چاه ها و تونل ها شدیداً مورد استخراج قرار گرفته است . تا سال 1332 معدن در اختیار شرکت خصوصی مولد بوده است ولی هیچگونه اطلاعات زمین شناسی در مورد کانسار در دوره مذکور در دست نمی باشد . قبل از دولتی شدن معدن ، احتمالاً رگه های موجود در بین چاه های یک و سه بیشتر بوده که توسط بخش خصوصی استخراج شده است .
بر اساس مطالعات بنه[1] در سال 1929 در معدن سرب نخلک ، حدود 53 سال قبل بهره برداری مشاهده شده است که البته با در نظر گرفتن امکانات و وضعیت آن زمان که تا سال 1332 ادامه داشته است ، از آن پس شرکت سرب نخلک به شرکت سهامی کل معادن ایران واگذار گردیده است که از آن تاریخ تاکنون مراحل کارهاهی استخراج و ذوب به شرح زیر می باشد :
از سال 1332 تا پایان سال 1349 مراحل ا کتشاف و استخراج رگه های معدنی همراه با ذوب سرب بوسیله سه کوره ذوب سنتی در معدن نخلک ادامه داشته است و کارهای استخراجی عمدتاً در افق های معدنی در طبقه 125- و 137- متری و کمی هم در طبقات 137- متری و کمی هم در طبقات سطحی صورت گرفته است . از سال 1349 به علت عدم رعایت اصول ایمنی در کوره های ذوب سرب که باعث آلودگی هوای منطقه ، خصوصاً هوای معدن شده ، همچنین مصرف بی رویه چوبهای جنگلی جهت گرم کردن کوره ها که خود در این منطقه کویری باعث نابودی درختان شده است ، همچنین مقرون به صرفه نبودن عمل ذوب در کوره های سنتی ، ادامه کار در کوره های مذکور متوقف گردید . در حال حاضر معدن سرب نخلک با تعداد 239 نفر کارگر و کارمند ، سالیانه در حدود 2000 تن سنگ معدن با عیار متوسط 7 % و نقره حدود 80 گرم در تن استخراج و به کارخانهه تغلیظ فصلی حل می شود . در کارخانه تغلیظ مرحله پر عیار کردن انجام می شود و محصول بدست آمده در حال حاضر سالیانه حدود 1200 تن کنسانتره سرب با عیار 64-62 درصد سرب و حدود 65 گرم نقره در تن می باشد .
1-2- چینه شناسی
1. Bohneh 1929
دسته بندی | زمین شناسی |
بازدید ها | 17 |
فرمت فایل | doc |
حجم فایل | 31 کیلو بایت |
تعداد صفحات فایل | 32 |
مقدمه :
ایستگاه هواشناسی کشاورزی کرج در سال 1350 شمسی (1971 میلادی) فعالیت خود را بطور رسمی و دوازدهساعته با ثبت و گزارش وضعیت جوی و پارامترهای هواشناختی آغاز کرد و از سال 1360 بر روی محصولات استراتژیک سازگار با اقلیم منطقه از جمله : واریتههای مختلف گندم، جو و ذرت کار نمود و از هر محصول بولتنهای ماهانه و فصلی تهیه و به اداره ایستگاههای هواشناسی کشاورزی ارسال نموده است. لازم به توضیح است آمار موجود در اداره خدمات ماشینی سازامان هواشناسی مربوط به کرج از سال 1350 مربوط به آمار ایستگاه اقلیم شناسی واقع در دانشگاه کشاورزی است که از لحاظ موقعیت مکانی و ارتفاع با موقعیت و ارتفاع ایستگاه فعلی تفاوت دارد.
مشخصات ایستگاه هواشناسی کشاورزی کرج
نام ایستگاه : ادراه تحقیقات هواشناسی کشاورزی کرج نام استان: تهران
نوع ایستگاه: هواشناسی کشاورزی و سنوپتیک نام شهرستان: کرج
طول جغرافیایی : 58 درجه و 57 دقیقه شرقی سال تاسیس : 1350
عرضجغرافیایی: 35 درجه و 48 دقیقهی شمالی شمارهتلفن و فکس : 2782021-0261
ارتفاع از سطح دریا: 9/1292 متر موقعیتایستگاه: زمینهایدانشکدهکشاورزی
نشانی : کرج ابتدای جاده ماهدشت (مردآباد)- کرج، مزارع دانشکده کشاورزی، اداره تحقیقات هواشناسی کشاورزی کرج
خلاصهای از موقعیت و وضعیت ایستگاه کشاورزی کرج
1- مساحت مزارع دانشکده کشاورزی : 200 هکتار
2- زیربنای ساختمان اداری 160 مترمربع/ مساحت کل: 6000 مترمربع/ مساحت محوطه نصب ادوات: 26×26 مترمربع
3- تعداد خانههای سازمانی: خانه سازمانی ندارد
4- مهمانسرا: ندارد
5- مالکیت زمین: دانشکده کشاورزی کرج
6- فاصله تا مرز تراکم شهر : 3 کیلومتر
7- حوضه آبریز (اصلی): دریاچه نمک: (فرعی) رودخانه کرج
8- ویژگی اقلیمی : نیمه خشک
9- نوع خاک : رسوبی/ بافت خاک: لومی شنی
10- وضعیت طبیعی منطقه : دشت جنوبی رشته کوه البرز
11- نوع پوشش گیاهی منطقه : گیاهان علفی، نباتات کشت شده
12- محصولات کشت شده در منطقه : گندم، جو، ذرت، آفتابگردان، سیب زمینی، سویا، سیفیجات، یونجه، پنبه، کلزا، چغندرقند، درختان سیب، هلو، زردآلو، گیلاس، آلبالو، گردو و انگور
13- محصولات مورد مطالعه در ایستگاه : گندم و جو و ذرت
14- آفات و امراض مهم منطقه : سن گندم، آتشک درختان دانه دار، کنه قرمز اروپایی، شپشک، مینوز، سرخور طومی یونجه، کرم ساقه خوار یونجه، کک و آگروتیس چغندرقند
15- منبع آب مصرفی: چاه عمیق
16- روش آبیاری : نشتی، جوی و پشته
17- زهکشی داخلی : خوب
ویژگیهای اقلیمی
استان تهران با وسعت بیش از 1800 کیلومتر مربع در جنوب رشته کوه البرز و در محدوده طول جغرافیایی 10، 50 تا 10، 53 درجه شرقی و عرض جغرافیایی 50، 34 تا 20، 36 درجه شمالی واقع شده و ارتفاع متوسط آن از سطح دریا حدود 1250 متر است. استانهای مرکزی، قزوین، قم، مازندران و سمنان آن را از اطراف احاطه کردهاند. در این استان به لحاظ تغییرات قابل ملاحظه ای ارتفاعی، شاهد تغییرات زیاد پارامترهای هواشناختی خصوصاً دما و بارش، تحت تأثیر توپوگرافی میباشیم.
در مقیاس کلی منطقه کرج همانند سایر بخشهای استان تهران در فصول سرد سال متأثر از سیستمهای شمالی و شمال غربی و غربی بویژه جنوب غربی بوده و ریزشهای جوی آن که از ماههای آبان و آذر آغاز و تا اواسط اردیبهشت ماه ادامه دارد، تابعی از فعالیتهای سیستمهای فوق میباشد.
از نظر ویژگیهای خرد اقلیمی، منطقه کرج از پاره ای جهات دارای مختصات شاخصی است که به آنها اشاره میشود.
منطقه کرج به لحاظ اقلیمی تحت تأثیر ارتفاعات البرز و دره چالوس و رودخانه کرج قرار دارد که موجب خنک و مرطوب تر شدن این منطقه نسبت به تهران میگردد و این تمایز تقریبا در تمام طول سال مشاهده میگردد. علت اختلاف دمای کرج نسبت به تهران به خصوص در شبها به سبب نزدیکی کرج به ارتفاعات شمالی و سرد شدن شبانه این دامنهها و وزش باد کوه به دشت میباشد.
دور بودن کرج از دشت کویر نیز موجب برودت و رطوبت بیشتر این منطقه نسبت به تهران در فصول مختلف سال بویژه در تابستان میگردد.
در مورد بارندگی های تابستانه کرج میتوان اینگونه بیان داشت که گاهی اوقات برخورد و توده هوای گرم جنوبی و نسبتاً سرد و مرطوب شمالی که درسطوح فوقانی ناحیه البرز صورت میگیرد، موجب می گردد که ابرهای جوششی بسیار فعال در منطقه پدید آمده و ریزشهای رگباری شدیدی را بوجود آورد که غالبا همراه با سیل است.
ایستگاه هواشناسی کرج در جنوب غربی شهر کرج و در فاصله 3 کیلومتری از مرز تراکم شهر واقع شده است محصولات کشت شده در این مرکز بصورت ازدیادی و آزمایشی بوده و تحقیقات این اداره بر روی محصولات ازدیای انجام میگیرد.
برخی مشخصههای اقلیمی ایستگاه هواشناسی کشاورزی کرج در دورهی آماری 1350 تا 1380 به شرح ذیل میباشد:
میانگین بارندگی سالیانه کرج حدود 251 میلیمتر با ضریب تغییرات 1/24 درصد و حداقل mm3/89 و حداکثر mm 4/374 می باشد. بیشترین رکورد بارندگی ماهانه کرج mm127 در اسفند 74 (mm6/144 نوامبر 1994) ثبت شده است فصل زمستان با 3/42 درصد و فصل تابستان با 5/1 درصد بیشترین و کمترین سهم را در بارش سالیانه برعهده دارند.
حداقل و حداکثر مطلق دما به ترتیب 20- و 42 درجه و میانگین سالیانه نیز 1/14 درجه سانتیگراد می باشد. ماه تیر با میانگین 0/26 درجه سانتیگراد و دی با 2/1 درجه سانتیگراد به ترتیب گرمترین و سردترین ماه سال محسوب میشوند
دسته بندی | زمین شناسی |
بازدید ها | 30 |
فرمت فایل | doc |
حجم فایل | 211 کیلو بایت |
تعداد صفحات فایل | 13 |
انواع فرآیندهای فیزیکی رسوبگذاری
فرآیندهای فیزیکی یکی از چهار فرآیند میباشد که شامل حمل و نقل و رسوبگذاری دانهها است. دانهها پس از تخریب توسط آب و باد یا یخ حمل شده و در انتها در حوضه رسوبی ته نشین میشوند. برای بررسی بیشتر خواص فیزیکی باید شرایط دینامیکی حرکت ذرات جامد در هوا یا آب را مورد بررسی قرار داد. زیرا بدین طریق میتوان نتیجه حاصل را با فرآیندهای رسوبی که باعث تشکیل آنها گردیدهاند، مرتبط کرد.
فرآیندهای هیدرودینامیکی رودخانهها
دانهها پس از تخریب در منشا توط عواملی از قبیل آب و هوا و یخ به ریف حوضه رسوبی حرکت میکنند. دانههای جامد ممکن است به صورت معلق ، جهشی ، غلتیدن و سرخوردن بر روی دانههای دیگر حرکت کنند. نحوه حرکت به اندازه سرعت و شدت جریان بستگی دارد. بسته به سرعت آب در رودخانهها دو نوع جریان خطی و آشفته قابل مشاهده است. در جریانهای خطی ذرات جامد از مایع به صورت خطی در یک لایه از مایع حرکت میکنند به نحوی که لایه پایین و بالایی باهم موازی است.
در جریانهای آشفته که در اثر افزایش سرعت آب بوجود میآید. ذرات جامد در مایع به صورت مارپیچی حرکت میکنند. در این نوع جریانها ذرات به طرف جلو ، بالا و پایین حرکت میکنند ولی در جریانهای خطی ذرات فقط به طرف جلو حرکت میکنند. تغییر جریان از خطی به آشفته به طول لوله یا کانال ، سرعت انتخاب شده ، شکل هندسی کانل و خوصیات دیگر حداکثر است ولی در جریانهای آشفته آب دائما در حرکت است از کناره رودخانه به مرکز میرود و دائما تغییر مکان میدهد. بطور کلی در حرکت دانه ریز نیروی ویسکوزیته اهمیت دارد ولی در حرکت ذرات درانه درشت نیروی جاذبه به اهمیت بیشتری دارد.
مکانیزم حرکت اولیه دانه (تخریب(
بطور کلی دانهها در کف بسته به حالت سکون قرار دارند. هنگامی که جریان مواد سیال از روی دانهها عبور میکند، دانهها تحت تاثیر چها نیروی مختلف قرار میگیرند که این نیروها عبارتند از نیرو وزنی دانه بستگی دارد و از حرکت آن جلوگیری میکند، نیروی اصطکاک بین دانه و دانههای اطراف که این نیرو نیز از حرکت دانهها جلوگیری میکند. نیروی کشش مایع که تمایل دارد دانه را دانه را بر روی دانههای دیگر حرکت داده و به صورت غلتیدن جابجا کند. میزان این نیرو به سرعت جریان بستگی دارد و بالاخره نیروی هیدرولیکی بررسی نشان میدهد که دانه به صورت عمودی از زمین بلند کند و در جهت جریان قرار دهد.
بررسیها نشان میدهد که دانه به صورت عمودی از زمین بلند میشود و سپس در هنگام پایین و برخورد به دانههای دیگر به حرکت خود ادامه میدهد که این عمل را جهش میگویند. فرآیند جهش در هوا بهتر از آب صورت میگیرد، زیرا نیروی بلند کردن دانه فقط هنگامی که دانه در روی سطح زمین قرار دارد موثر است و مسئول حرکت اولیه آن میباشد ولی زمانی که دانه از جای خود بلند شد نیروی کششی هوا یا آب مسول حرکت آن است.
برای حرکت دانهها سرعت جریان باید به حد بحرانی برسد تا اینکه بتواند دانهها را از جای خود حرکت دهد و با خود حمل سرعت بحرانی برای تخریب و حرکت دانهها با افزایش قطر آنها زیاد میگردد. با استثنای ذرات رس که برای تخریب آنها سرعت زیادتری لازم است. زیرا ذرات دانه ریز دارای خاصیت چسبندگی بوده و به یکدیگر متصل میشوند همچنین ذرات دانه ریز رسی در سطح دارای ناهمواریهای زیادی بوده و زاویهدارتر میباشند لذا در مقابل جریان آب مقاومت بیشتری از خود نشان میدهند.
انواع مختلف حرکت دانهها
هنگامی که میزان انرژی موجود در کف بسته از حد بحرانی گذشت، دانهها در سطح لایه شروع به حرکت میکنند. نوع حرکت ذرات به اندازه آنها و سرعت جریان بستگی دارد. دانهها در آب و هوا به چهار صورت غلتیدن، سر خوردن ، جهشی و معلق حرکت میکنند.
در شرایط ثابت با سرعت مشخص دانههای درشت (گراول) به صورت غلتیدن و سرخوردن در سطح لایه حرکت میکنند. همچنین در این شرایط دانههای سبک (ماسهها) از زمین بلند شده و در اثر برخورد به دانههای دیگر به صورت جهشی و دانههای بسیار ریز (سیلت و رس) به صورت معلق حرکت میکنند.
در این شرایط به گراول هل و ماسهها که در بستر حرکت میکنند بار بستر (Bed load) و ذرات دانه ریز سیلت و رس را بار معلق (Sus pension load) میگویند. به علت اختلاف چگالی آب و هوا عمل جهش در هوا بهتر صورت میگیرد. دانهها در هنگام برخورد به رسوبات سطح لایه (عمل جهش در هوا) مقداری از انرژی جنبشی خود را به دانههای در حال استراحت در سطح لایه منتقل میکنند و باعث حرکت آنها به صورت خزیدن در سطح لایه میشوند. این نوع حرکت را به نام خزش سطحی (Surface Greep) مینامند.
جورشدگی هیدرولیکی
روشهای مختلف حرکت دانهها باعث میشود که دانهها در اندازههای متفاوت به روشهای مختلف حرکت کنند. این اختلاف در نوع حرکت باعث میشود که یک جدایی در اندازه و شکل دانهها بوجود آید که به نام جورشدگی هیدرولیکی (Hydroulic Sorting) نامیده میشود. این جورشدگی در رسوبات بادی که اختلاف چگالی بین دانههای ماسه و هوا زیاد است بخوبی دیده میشود. در نتیجه این اختلاف باد قادر به حمل دانههای درشت ماسه نمیباشد.
بطور کلی تمام ذراتی که با یکدیگر توسط فرآیندهای آبی یا بادی رسوب میکنند ذرات با تساوی رسوبگذاری نامیده میشوند. تساوی قطری در ذراتی را که به صورت معلق حرکت میکنند بهتر از دانههایی است که به صورت بار بستر حرکت خوهند کرد. زیرا ذراتی وجود دارند که از نظر شکل و اندازه یکسان نیستند ولی به علت اختلاف چگالی با یکدیگر رسوب کردهاند.
فرآیندهای حمل و نقل و رسوبگذاری
فرآیندهای حمل و نقل و رسوبگذاری دانههای رسوبی توسط جریانهای کششی ، جریانهای دانسیتهای یا چگالی ، معلق و یا یخچالها انجام میشود و موجب تشکیل رسوبات مختلفی میگردد که هر یک دارای اختصاصات بافتی مخصوص به خود میباشند.
جریانهای دانسیتهای که در اثر احتلاف چگالی بین مواد سیال ایجاد میشود، پس از رسوبگذاری مواد رسوبی مخلوطی از ذرات ماسه ، سیلت و رس بر جای گذاشته میشود که معمولا فاقد طبقه بندی مورب هستند این نوع رسوبات طبقه بندی تدریجی از خود نشان میدهند. در حالت تعلیق ، ذرات دانه ریز به صورت معلق حمل شده و پس از کاهش شدت جریان در محیط آرامی رسوب میکنند.
اگر دانههای رسوبی توسط یخچالها یا جریانهای گلی حمل میشوند، پس از رسوبگذاری تشکیل رسوبات ناجورشدگی خیلی بد را میدهند. این نوع رسوبات میتوانند در آب یا خشکی تشکیل شوند. همانطور که توضیح داده شد فرآیندهای حمل و نقل و رسوبگذاری در محیطهای مختلفی همچون محیطهای خشکی ، محیطهای آبی ، حمل ونقل توسط نیروی جاذبه و همچنین حمل و نقل توسط یخچالها انجام میشود.
فرآیندهای رسوبگذاری در محیط آبی
دسته بندی | زمین شناسی |
بازدید ها | 34 |
فرمت فایل | doc |
حجم فایل | 3837 کیلو بایت |
تعداد صفحات فایل | 38 |
انواع سنگهای آذرین
دیدکلی
چندین سیستم مختلف برای طبقه بندی سنگهای آذرین ارائه شده است. نکته مشترک تمامی این سیستمهای طبقه بندی این است که در جزئیات همگی جنبهای اختیاری و مصنوعی داشته و متکی به پارهای خواص هستند که نمیتوان آنها را از روی نمونه دستی و یا در صحرا تعیین کرد. در طبقه بندی سنگهای آذرین بافت و ترکیب سنگهای آذرین از مهمترین مواردی هستند که باید در نظر گرفته شوند. در این نوع طبقه بندی نمودارهایی که در آنها نسبت سیلیکاتها در هر یک از سنگهای آذرین را نمایش میدهد کاربرد دارند.
سنگهای آذرین روشن
این سنگها از رنگی روشن و نیز وزن مخصوصی نسبتا کم برخوردارند. گاهی اوقات این سنگها را تحت عنوان سنگهای سیاسی میشناسند. دو سنگ ، گرانیت و گرانودیوریت روی هم رفته 95
درصد از کل سنگهای آذرین قارهای ناشی از انجماد ماگما را تشکیل میدهند.
گرانیت سنگی دانهای است و ترکیب کانیایی آن شامل دو قسمت فلدسپات اورتوکلاز + یک قسمت کوارتز + یک قسمت فلدسپات پلاژیو کلاژ + مقادیر ناچیزی از آهن – منیزیمدارها.
سنگهایی که ترکیب کانی شناسی آنها مشابه گرانیتها باشد ولی به جای بافت دانهای دارای بافت ریز بلور باشد، ریولیت نامیده میشود. معادل شیشهای گرانیت، ابسیدین نام دارد. این سنگ معمولا ظاهری قیرگون دارد و کاملا سیاه است ولی باید توجه داشت که اگر قطعهای بسیار نازک از ابسیدین را که ظاهری نیمه شفاف دارد را در مقابل زمینه روشن قرار دهیم رنگی سفید دودی از خود نشان میدهد.
سنگهای آذرین تیره
بر اساس تخمین های انجام گرفته 98 درصد از حجم کل سنگهای تشکیل شده از ماگماهای بیرون ریخته بر روی سطح زمین ترکیبی بازالتی ، آندریتی دارند. واژه مترادف بازالت سنگ پلاکانی است و این اسم از آنجا ناشی میشود که بازالت در برخی از بیرون زدگیها ، ستونهایی تشکیل میدهد که ظاهری شبیه به پلکان دارند. این ستونها حاصل فرآیند سرد شدن بوده و در اثر هوازدگی ظاهر میشوند. بازالت بافتی ریز بلور داشته و ترکیب کانی شناسی آن به شرح زیر است:
یک قسمت فلسپار پلاژیوکلاژ + یک قسمت آهن – منیزیمدارها.
گابرو سنگی است که ترکیبی مانند بازالت داشته اما بافت آن به جای ریز بلورین بودن دانهای است.
پریدوتیت سنگ آذرینی با بافت دانهای است که عمدتا از آهن – منیزیمدارها تشکیل میشود.
سنگهای آذرین بینابینی
هنگامی که در نمودار طبقه بندی سنگها از جهت دربر دارند سنگهای روشن به طرف جناح دربرگیرنده سنگهای تیره حرکت میکنیم. ترکیب سنگهای آذرین بطور پیوسته از نوعی به نوع دیگر تغییر مییابد. آندزیت نامی است که به سنگی آذرین و ریزبلوری که ترکیبی بین گرانیت و بازالت دارد اطلاق میشود. این سنگها برای اولین بار در کوههای آند در آمریکای جنوبی دیده شدند و نام آنها نیز از همین امر ناشی شده است. آندزیتها اکثرا در مناطق اطراف اقیانوس آرام یافت میشوند و معادل دانهای آندزیت ، دیوریت نام دارد.
پگماتیت
محلولهایی را که در مراحل آخر سرد شدن و انجماد ماگما تولید میشوند، محلولهای گرمایی مینامند. از تبلور این محلولها سنگ آذرین بسیار درشت دانهای موسوم به پگماتیت تشکیل میشود از واژه لاتین پگمات به معنی به هم بافته شده مشتق شده است. کوارتز و فلدسپات پتاسیمدار کانیهای اصلی حاصل از تبلور محلولهای گرمایی هستند. پگماتیتها صرفا بر مبنای اندازههای غیر عادی دانههای کانی موجود قابل تشخیصاند.
در معدودی از پگماتیتها دانههای فلدسپات پتاسیم و کوارتز رشد در هم داشته و اساسا یک واحد را تشکیل میدهند. در این پگماتیتها کوارتز رنگی تیره تر از فلدسپات داشته و در نتیجه شکل کلی آن شبیه کتیبههای باستانی آشوری و بابلی است. به همین علت این نوع رشد در هم به ساختار گرافیک شهرت یافته است (از واژه لاتین گرافین به معنی نوشتن مشتق شده است).
سنگهای آذرین کره ماه
تجزیه شیمیایی سنگهایی که طی ماموریتهای مختلف سفینه آپولو از کره ماه به زمین آورده شد نشان میدهد که بجز در مورد فقدان آب و اکسیژن آزاد ، ترکیب سنگهای کرده ماه بسیار شبیه ترکیب سنگهای زمین است. اکثر سنگهای ماه از نظر منشا آذرین هستند. برای مثال سنگهای حوضچه ماریا همه گدازههای بازالتی و نمونههای مناطق مرتفع ماه همه از انواع گابرو ، نوریت (گابرویی متشکل از پلاژیوکلاز و پیروکسن ارتورومبیک) و آنورتوزیت (سنگی عمدتا متشکل از پلاژیوبافت سنگ آذرین
تعریف
منظور از بافت ، شکل و اندازه بلور و رابطه فیزیکی آنها با یکدیگر است که توسط میکروسکوپ مورد مطالعه قرار میگیرد. بنابراین بافت سنگ آذرین میتواند مراحل مختلف انجماد نحوه تبلور سنگ آذرین را مشخص نماید. از این رو بافت سنگهای آذرین بصورت زیر تقسیمبندی میشوند.
بافت درشت بلور
بافت درشت بلور به سنگهای آذرینی اختصاص دارد که آرام در اعماق سرد شده و همه بلورها فرصت کافی برای رشد یافتهاند. در بافت درشت بلور اندازه بلورها بین چند دهم میلیمتر تا چند سانتیمتر متغیر است. در این بافت به هیچ وجه بخش شیشهای و غیر متبلور وجود ندارد. اغلب
دسته بندی | علوم پایه |
بازدید ها | 46 |
فرمت فایل | doc |
حجم فایل | 19 کیلو بایت |
تعداد صفحات فایل | 17 |
الکل وانواع آن
ازنظر علم شیمی هرماده ای که در فرمول شیمیایی آن عامل هیدروکسیل (OH- ) وجود داشته باشد ،یک الکل محسوب می شود .الکل ازمشتقات هیدرو کربن هاست که درآن هر مولکول ،ترکیبی ازچند اتم هیدروژن وکربن می باشد .نهایت ،یک عامل (OH) جانشین یک اتم هیدروژن می گردد.وبنابر تعداد عامل (OH) ،الکل را یک یا چند ظرفیت می گویند . الکل انواع زیادی دارد که ذیلاًبه برخی ازآن ها اشاره می کنیم
الف )الکل متیلیک
ساده ترین الکل ها ،الکل متیلیک است که مبنای الکل های یک ظرفیتی می باشد .الکل متیلیک از تقطیر چوب به دست می آید وازاین رو به آن عرق چوب نیز می گویند .این ماده مایعی است بی رنگ که در66 درجه سانتی گراد می جوشد ،باشعله کمی آبی رنگ می سوزد وچون باآب مخلوط گردد،تقلیل حجم یافته وتولید حرارت می کند.
الکل متیلیک ،درصنایع رنگ سازی کاربرد دارد .به علاوه سمی است قوی که با شرب 8تا 10گرم آن اختلالات هاضمه واغلب کوری دست داده وتلف می کند.پس ازالکل متیلیک یا متانول بقیه الکل های یک ظرفیتی یا یک عاملی رابه الکل های نوع اول 7دوم و سوم طبقه بندی می کنند.. اتانول که موضوع بحث ماست ،درزمره الکل های نوع اول است .هم چنین الکل های دو ظرفیتی وسه ظرفیتی و... نیز وجود دارد که کمی می توان ازضد یخ به عنوان الکل دو ظرفیتی (یا الکل دو عاملی اشباع )وگلیسیرین به عنوان الکل سه ظرفیتی (یا الکل سه عاملی اشباع)نام برد .ب)الکل اتیلیک اگر واژه الکل بدون هیچ پسوند یا پیشوند به کار رود ،مقصود الکل اتیلیک یا اتانول است که معروف ترین انواع الکل میباشد .در آینده خواهیم دید که الکل اتیلیک درصنایع گوناگون ودر زندگی روز مره مردم ،کاربرد زیادی دارد.چنان که درمقدمه اشاره شد ،موضوع بحث مادر این نوشتار منحصراً الکل اتیلیک یا اتانول است .وهر کجا دراین رساله ،واژه الکل رابدون افزودن کلمه به کار بریم مقصودمان همین نوع الکل می باشد .اتانول به طور طبیعی وبه مقدار بسیار کم درنان (5%درصد )،مغز انسان وگیاهان وجود دارد .علاوه برمخمر وبعضی باکتری ها،بدن انسان نیز مقدار چشمگیری الکل تولید می کند .دراکثر موارد ،تمام تبیین اوصاف الکل وآثار ظاهری الکل برجسم وروان آدمی می پردازیم .ویژگی های الکل وآثار آن
الکل اتیلیک در 3/78 درجه سانتی گراد به جوش می آید ودر 114-درجه ذوب می شود .الکل مطلق ,آب گونه ای است بی رنگ وزود آتش گیر ،با بویی ویژه ،در برودت زیاد ابتدا قوام آمده وسپس مانند شیشه منجمد می گردد. الکل برخلاف پندار بعضی اثر تحریکی براعضای بدن ندارد ،بلکه اثرآن تخدیر یعنی تضعیف فعالیت های بدن وکاستن ازدقت درانجام رفتارهای گوناگون است .درکتاب های علمی نیز ،الکل را درردیف تخدیر کننده ها هم چون اتروغیره میآورند.یکی ازدانشمندان دراین زمینه می گوید:«این واقعیت که افراد تحت تاثیر الکل ،خجالتشان ازبین می رود وزیاد حرف می زنند ،به علت اثر تحریکی الکل برمغز نیست ،بلکه به دلیل ازبین رفتن کنترلی است که مراکزعالی مغز درمیانه روی واعتدال شخص ازخود انجام می دهند . به هر حال ,تمامی مشروبات الکلی ,حاوی مقداری الکل می باشند وهر گونه آثار تخدیری که ازمشروبات الکلی بروز می کند مربوط به وجود این ماده درآن هاست .میزان این تخدیر که مارازآن به مستی تعبیر می کنیم بستگی به درصد الکل موجود دراین گوشه مشروبات دارد . چنان چه شخص مقداری الکل بنوشد ,قریب 15آن فوراًبه وسیله جدار معده داخل درخون وبقیه درامعاءوارد می گردد .مقداری هم ممکن است به وسیله ریتین یا با ادرار خارج شود .ولی قسمت اعظم آن در هر حال دربدن می ماند ودرآن جامتدرجا اکسید شده واحتیاجی به هضم وگوارش ندارد . کبد انسان قادر است درهر ساعت ,8گرم الکل رااکسید کند .مقادیر زیادتر درجریان خون ظاهر شدهولی غلظت کم تر از 05/0% علامتی درشخص به وجود نمیآورد .از غلظت به 1%درخون برسد ,اختلال تنفسی وقلبی ونهایتاً مرگ ایجاد می شود هرچند مقدار کشنده آن برحسب افراد می کند .پیتر کوپر نیز دراین زمینه چنین می نویسد:«الکل ازتمام راه ها جذب بدن می شود ولی جذب آن از راه دهان ومعده بسیار کم است .روده کوچک 80%یا بیشتر مقدار خورده شده را جذب می کند .کم تر از 10%بی تغییر ازراه ادرار وتنفس دفع می شود .الکل دربافت ها به سرعت منتشر شده ودرحدود 8گرم درساعت اکسید وبه گاز کربنیک وآب تبدیل می شود بدین ترتیب مهم ترین اثر الکل 7تضعیف دستگاه اعصاب مرکزی است .الکل درنتیجه تاثیر برروی اعصاب ,واکنش دررگ هاایجاد نموده وخون را به سطح بدن جریان می دهد واز این طریق ,پوست راقرمز می کند وابتداءدربدن ایجاد حرارت می نماید .اما این اثر دیری نمی پاید ,چرا که پس ازمدت کوتاهی ,بدن حرارت خود راتا دو برابر از دست می دهد
شخص که الکل می نوشد ابتدا فعالیت اوبیش ازحد معمول می شود وبه ترتیبی که ذکرشد ,درجه حرارت بدن بالا رفته وتنفس شدید می شود .آن گاه مرکز تکلم درمغز تحت تاثیر الکل قرار گرفته وشخص پرچانگی می کند .سپس مرکز سمعی مغز متاثرشده وشخص صداهای بی خود می شنود .بعد مرکز بینایی مغز دچار اختلال گشته وشخص تصاویر موهوم میبیند وبالاخره مرکز حفظ تعادل تحت تاثیر الکل قرار گرفته وکسی که مشروب الکلی نوشیده توازن اعمال فیزیکی راازدست می دهد . بدین ترتیب با نوشیدن الکل ,خویشتن داری شخص که به عنوان منشا حجب درانسان پایه گذاری شده است ,تقریباًازبین رفته وباعث بروز اعمال نا هنجار می شود
دسته بندی | زمین شناسی |
بازدید ها | 45 |
فرمت فایل | doc |
حجم فایل | 858 کیلو بایت |
تعداد صفحات فایل | 38 |
مقدمه
مجوعههای افیولیتی که به نام Alpin Ultramafic Complexes هم خوانده شده است. به نظر عده زیادی از زمین شناسان ، معرف پوسته اقیانوسی است که در نتیجه پدیدهای که به نام فرارانش خوانده میشود در پوسته قارهای قرار گرفته است. افیولیتها از مجموعهای از بازالتها ، گابروها ، سنگهای اولترامافیک و رسوبات عمیق دریایی تشکیل شده است. افیولیتها معمولا ضخیم بوده و ضخامت آنها تا 8 کیلومتر هم میرسد.
ریشه لغوی
نام افیولیت توسط «برونیار» (1827) برای توصیف سرپانتینیتها یا سنگهایی که از گروه سرپانتین تشکیل شده بودند، ابداع شد. وی این نام را از لغت یونانی قدیمی افی به معنی مار و لیت هم که به معنی سنگ است، گرفت.
تاریخچه
پس از نامگذاری افیولیتها توسط برونیار ، «استینمن» (1906) مفهوم مجموعه یا سری سنگی افیولیت را بکار برد. این مجموعه سنگی اصولا حاوی سنگهای اولترامافیک (مثل کانی سرپانتینت و پریدوتیت) ، گابرو ، اسپیلیت و سنگهای وابسته است. او همچنین مشاهده کرد که این سنگها اصولا در چرتها و رسوبات پلاژیک مستقر شدهاند یا با آنها وابستگی دارند. در سال 1926 ، «بنسون» گابروها و سنگهای اولترامافیک موجود در سنگهای سبز و سنگهای افیولیتی را توصیف نمود. توصیف او شامل سنگهایی میشد که در نواحی رورانده و کوهزایی آلپی (مثل سنگهای آذرین نوع آلپی) گسترش داشت. «تایر» (1967) بیان نمود که واحدهای اولترامافیک و گابرویی مجموعههای افیولیتی با قسمتی از سری سنگ آذرین آلپی شباهت دارند.
سیر تحولی و رشد
در سال 1957 «درور» ابراز داشت که بعضی از تودههای پریدوتیت نوع آلپی ، قطعات گوشته فوقانی میباشند که به طریقه تکتونیکی کنده شده اند. «دیتز» (1963) اشاره نمود که سرپانتینیت های آلپی قطعاتی از کف اقیانوس بودهاند که در یک رخداد کوهزایی به صورت تکتونیکی از جا کنده شدهاند. در همان سال ، «گاس» مقالهای در مورد این موضوع نوشت که آیا ماسیف ترودوس در قبرس قطعهای از لیتوسفر اقیانوسی به سن مزوزوئیک بوده است یا نه؟
در سال 1967 گاس ، زمین شناسی و ژئوفیزیک سنگهای اولترامافیک ماسیف ترودوس واقع در قبرس را توصیف کرد. در سپتامبر 1972 سازمان زمین شناسی آمریکا در مورد افیولیت کنفرانس بزرگی برگزار نمود. در همین کنفرانس قرار شد که نام افیولیت به یک مجموعه مشخص از سنگهای مافیک تا اولترامافیک اطلاق گردد.
سکانس افیولیتها
سکانس افیولیتها یا پوسته اقیانوسی معمولا از 5 قسمت تشکیل شده است که از سمت بالا به پایین شامل قسمتهای زیر است:
رسوبات پلاژیک و عمیق دریایی:
این رسوبات شامل رادیولادیت ، چرت ، آهکهای پلاژیک مناطق عمیق دریا و رسوبات آبیسال میباشد.
پیلولاوا :
در اثر انجماد سریع ماگمای بازالتی در مجاورت آب ، بازالت حاصل و بیپوست به خود میگیرد که دارای ترکهای زیادی در سطح است. رنگ این قسمت سبز تیره تا سبز زیتونی است و اغلب حفرهدار است که حفرات توسط مواد ثانوی مانند کلسیت ، کلسدونی ، زئولیت ، کلریت ، پرهنیت و ... پر شدهاند.
بازالت متراکم : بازالت متراکم در زیر پیلولاوا قرار دارد و به دایکهای صفحهای ختم میشود.
دایکهای صفحهای :
دایکهای صفحهای به موازات محور گسترش اقیانوسها قرار دارند. و این دایکها مسلسلوار در کنار هم چیده شدهاند و معمولا یک طرف اینها حاشیه انجماد سریع دارد.
گابروهای لایهای :
ترکیب گابرو عینا مثل بازالت است. در داخل این گابروها حجمهایی از پلاژیو گرانیت دیده میشود، که محصول تفریق ماگما است.
کانی پریدوتیت قاعده (تکتونیت) :
پریدوتیت قاعدهای ممکن است هارزبوژیتی و یا لرزولیتی باشد.
طرز تشکیل افیولیتها
وجود افیولیتها و پراکندگی آنها در اغلب قارههای دنیا نشان میدهد که در جایگیری بخش اعظم آنها پدیده تصادم قاره – قاره دخیل بوده و اقیانوس مابین دو قاره در اثر فرآیند فرورانش از بین رفته و در حین تصادم بخشهایی از پوسته اقیانوسی بر روی حاشیه غیر فعال رانده شدهاند. عدم وجود دگرگونی حرارتی قابل توجه در مرز تماس آنها با رسوبات بیانگر فرورانش آنها در حالت سرد میباشد.
در اثر تغییرات مکرر تکتونیکی و یا از ذونهای فرورانش پر شیب ، افیولیتها به ملانژهای تکتونیکی تبدیل میشوند و به دلیل سرپانتینی شدن بخش اولترامافیک قاعدهای ، واجد خاصیت پلاستیکی شده و به راحتی تغییر شکل مییابند. سرپانتینی شدن به تحرک افیولیت ملانژ کمک کرده و ورود قطعات سنگهای درونگیر و بیگانه به داخل سکانس افیولیتی را تسهیل می کند.
انواع افیولیتها
ون تکس سنگهای اولترامافیک و پریدوتیتها را به دو دسته استراتیفرم (غیر کوهزایی) و آلپی (کوهزایی) تقسیم میکند و انواع آلپی خود به دو دسته زیر تقسیم میشوند :
پریدوتیتهای واقعی یا افیولیتهای تیپ هاروزبورژیتی (HOT) :
بخش اولترامافیک قاعدهای شامل تناوبی از هارزبورژیت و دونیت بود، و توسط دایکهای پیروکسنیتی قطع میشود. زون تحولی شامل هارزبورژیت با رگههای دونیت که به سمت بالا به گابروهای لایهای همراه با لنزهای کرومیت و دونیت تبدیل میشود. سپس گابرو و ورلیت بصورت نوارهای تیره و روشن قرار دارند و به سمت بالا واجد گابروهای لایهای ، دایکهای دیابازی حاوی پلاژیو گرانیت و سپس بازالتهای تولئیتی از نوع N-MORB است. وجود هارزبورژیت در بخش قاعده و بازالت تولیتی با سرشت Normal-Middle oceam Ridge Basalt) N-MORB) توسعه زیاد دایکهای دیابازی نشان از حجم زیاد ماگمای تزریق شده در شکاف محوری و نرخ بالای ذوب بخشی درگوشه فوقانی است و این ویژگیها در شکافهای با نرخ گسترش تند ، (Fast spreading Ridge) FSR دیده میشود.
پریدوتیتهای منطقه ریشه (Root Zone) و یا افیولیتهای تیپ سرزولیتی LOT:
انواع سرزولیتی افیولیتها یا LOT ؛ ترکیب سرزولیتی در بخش اولترامافیک قاعدهای مشخص میشوند. در این دسته از افیولیتها حجم پلاژیو گرانیت زیاد بوده و حجم دایکهای صفحهای کم و بازالت تولئیتی دارای سرشت غنی شده P-MORB یا E-MORB میباشد. ویژگیهای اخیر نشانگر حجم اندک ماگما در شکافهای محوری ، نرخ کم ذوب بخشی در گوشته فوقانی و در نهایت نشانگر شکافهای غیر فعال بانرخ گسترش اندک Slow spreading ridge) SSR) میباشد.
از نظر نحوه و سبک جایگیری افیولیت ها را به سه دسته زیر تقسیم می کنند :
افیولیتهای حواشی فعال :در این نوع ، لکههای افیولیتی بصورت گسیخته در داخل و حواشی فعال قارهها یافت میشوند و اغلب فرم ملانژ دارند.
افیولیتهای مناطق تصادمی :این نوع افیولیتها در محل برخورد ورقهها یافت میشون
افیولیت ها وافیولیت ملانژهای ایران
دسته بندی | زمین شناسی |
بازدید ها | 47 |
فرمت فایل | doc |
حجم فایل | 26 کیلو بایت |
تعداد صفحات فایل | 15 |
اصول شیمیایی حیات
ترکیب شیمیایی انواع گیاهان، جانوران و میکروب ها بسیار مشابه است. از 92 عنصر موجود در طبیعت فقط تعداد معدودی در ماده زنده یافت می شود. عنصرهای هیدروژن (H)، اکسیژن (O)، کربن (C) و نیتروژن (N) روی هم 99 درصد جرم سلول ها را تشکیل می دهند در حالی که سه عنصر هیدوژن، کربن و نیتروژن کمتر از یک درصد جرم پوسته زمین را شامل می شوند.
علاوه بر عناصر فوق، کلسیم (Ca)، گوگرد (S) و فسفر (P) نیز در ماده زنده به مقادیر قابل ملاحظه یافت می شوند.
تنوع و ثبات ترکیبات کربن دار در موجودات زنده به ویژگی های اتم کربن ارتباط دارد.
چنانکه می دانید ظرفیت هر اتم به تعداد الکترون هایی که برای تکمیل کردن مدار خارجی باید به دست آورد یا از دست بدهد، بستگی دارد. اتم کربن در مدار خارجی خود چهار الکترون دارد و برای تکمیل این مدار به چهار الکترون دیگر نیازمند است؛ بنابراین کربن چهار ظرفیتی است. کربن هم چون سایر اتم ها تمایل دارد مدار خارجی خود را تکمیل کند تا پایدارتر شود. اتم کربن برای رسیدن به این هدف، با اتم های دیگر که آنها نیز برای کامل کردن مدار خارجی خود به الکترون نیازمندند، پیوند تشکیل می دهد. گرایش به تشکیل این پیوندها منشأ تنوع ساختاری مولکول های کربن دار است. یک اتم کربن به علت چهار ظرفیتی بودن، می تواند با چهار یا تعداد کمتری اتم دیگر پیوند تشکیل دهد به نحوی که در نهایت چهار پیوند تشکیل شود.
درشت مولکول های زیستی
سلول ها علاوه بر آب و مولکول های کوچک دیگر، مولکول های بزرگی نیز دارند که درشت مولکول یا ماکرومولکول نامیده می شوند. یک درشت مولکول پلی مری است که از به هم پیوستن تعدادی مولکول کوچک و مشابه به نام تک واحد یا مونومر ساخته شده است.
تک واحدها در درشت مولکول ها به صورت خطی یا منشعب به یکدیگر می پیوندند.
جرم مولکولی تک واحدها چند صد دُلتن و جرم مولکولی درشت مولکول های زیستی بین چندهزار و یک میلیون دُلتن است. مهم ترین درشت مولکول های زیستی عبارتند از : پلی ساکاریدها، پروتئین ها و اسیدهای نوکلئیک که به ترتیب از به هم پیوستن منوساکاریدها، اسیدهای آمینه و نوکلئوتیدها بدست می آیند. لیپیدها معمولاً جزء درشت مولکول ها طبقه بندی نمی شوند.
اما در اینجا همراه با آنها بررسی می شوند زیرا هم چون درشت مولکول ها نقش هایی عمده و مهم در سلول ایفا می کنند. لیپیدها از نظر اندازه بین مولکول های کوچک و درشت-مولکول ها قرار می گیرند.
برای فهمیدن بیوشیمی سلول، باید درشت مولکول ها را شناخت. باید دانست که آنها چه نوع ترکیباتی هستند، چگونه ساخته می شوند، چگونه تجمع می یابند و چگونه عمل می کنند.
ابتدا با کربوهیدرات ها که ساده ترین درشت مولکول های زیستی هستند آشنا می شوید، پس از آن لیپیدها و پروتئین ها و سپس اسیدهای نوکلئیک به ترتیب مورد بحث قرار می گیرند.
کربوهیدرات ها :
کربوهیدرات ها ساده ترین درشت مولکول های زیستی هستند که از سه عنصر اصلی کربن، هیدروژن و اکسیژن ساخته شده اند. در کربوهیدرات ها پیوندهای کووالان متعددی وجود دارند که کربن در آنها شرکت می کند و درنتیجه شکسته شدن آنها مقدار زیادی انرژی تولید می شود، بنابراین کربوهیدرات ها جزء ترکیبات انرژی زای سلول هستند.
مونوساکاریدها ساده ترین کربوهیدرات ها هستند. همه مونوساکاریدها از فرمول کلی (CH2O)n تبعیت می کنند. عدد n در فرمول بین 3 تا 7 متغیر است.
مونوساکاریدها سه تا هفت کربن دارند و آلدوز یا کتوز هستند. آلدوزها در کربن شماره 1 عامل آلدهیدی (-CHO) و کتوزها عامل کتونی (-C=O) دارند. قندهای سه، چهار، پنج، شش و هفت کربنی را به ترتیب تری یوز، تتروز، پنتوز، هگزوز و هپتوز می نامند.
گلیسر آلدهید یک قند 3 کربنی است و فرمول شیمیایی آن چنین است :
در این ترکیب کربن شماره 2 نامتقارن است زیرا با 4 گروه مختلف پیوند تشکیل داده است.
چنین کربنی می تواند دو ایزومر L,D داشته باشد. بطور کلی برای یک مولکول قند با n کربن اگر گروه –OH متصل به کربن شماره 1 – n آن دست راست و –H دست چپ رسم شود، ایزومر D و برعکس آن L نامیده می شود.
قندهای پنج کربنی و شش کربنی اهمیت ویژه ای دارند زیرا علاوه بر این که در راه های متابولیسمی شرکت دارند، در ساختار برخی درشت مولکول ها نیز بکار می روند. ریبوز و مشتقات آن که در ساختار اسیدهای نوکلئیک شرکت دارند، از مهم ترین قندهای پنج کربنی هستند. قند شش کربنی گلوکز با فرمول C6H12O6 واحد سازنده نشاسته، گلیکوژن و سلولز است.
الیگوساکاریدها ترکیباتی هستند که بین دو و ده واحد منوساکاریدی دارند. الیگوساکاریدها بر حسب تعداد واحدهای تشکیل دهنده آنها طبقه بندی می شوند مثلا اگر دو مولکول منوساکارید به هم متصل شوند دی ساکارید و در صورت اتصال سه مولکول منوساکارید، یک تری ساکارید ایجاد می شود. ساکاروز دی ساکاریدی است که از اتصال گلوکز با فروکتوز بدست می آید. لاکتوز دی ساکارید دیگری است که از اتصال گلوکز و گالاکتوز حاصل می شود.
کربوهیدرات هایی با بیش از ده واحد مونوساکاریدی در گروه پلی ساکاریدها قرار می گیرند.
نشاسته، گلیکوژن و سلولز از مهم ترین پلی ساکاریدهای زیستی اند که هر سه از واحدهای گلوکز ساخته شده اند.
نشاسته پلی ساکارید ذخیره ای در گیاهان است. شکل خطی آن آمیلوز و شکل شاخه دار آن آمیلوپکتین نام دارد.
گلیکوژن پلی ساکارید ذخیره ای در جانوران است و در سلول های کبد و ماهیچه به مقدار زیاد وجود دارد. جرم مولکولی گلیکوژن بیشتر از نشاسته است.
سلولز در دیواره سلول های گیاهی یافت می شود و ساختاری مشابه آمیلوز دارد. این پلی- ساکارید برای اغلب جانداران غذا محسوب نمی شود زیرا جانوران توانایی شکستن پیوندهای بین واحدهای گلوکز موجود در سلولز را ندارند. نشخوارکنندگان بدلیل داشتن باکتری های تجزیه کننده سلولز در دستگاه گوارش خود قادر به هضم سلولز هستند و لذا از آن به عنوان منبع غذایی استفاده می کنند.
کیتین یک پلی ساکارید ذخیره ای است که در پوشش خارجی بدن بسیاری از حشرات و سخت پوستان وجود دارد.
دسته بندی | زمین شناسی |
بازدید ها | 25 |
فرمت فایل | doc |
حجم فایل | 17 کیلو بایت |
تعداد صفحات فایل | 10 |
استفاده از باکتریهای مقاوم به اسید برای تولید اتانول از زباله خانگی
مقدمه
در حال حاضر ، تمایل بسیاری به اتانول به عنوان سوخت وسایل نقلیه به علت ارزش آن به عنوان یک اکسیژنات و گسترش دهنده سوخت وجود دارد . این حقیقت صنعت سوخت اتانول بر پایه ذرت در ایلات متحده را بر آن داشته تا سطح تولید بیش از دوبرابر را از سال 2000 تا2004 به ثبت برساند . دولت چین ینز تدابیری مشابه برای ترغیب تولید اتانول از مواد کم هزینه بویژه مواد لیگنو سلولزی اتخاذ نموده است .
مواد مختلف مورد استفاده در تولید اتانول از طریق تخمیر معمولاً به سه نوع اصلی تقسیم می شوند . نخست قندهایی که می توانند مستقیماً به اتانول تبدیل شوند ملاس و شکر نرم معمولاً بدین طریق مورد استفاده قرار می گیرند . این سوبستراتها به پیش تیمار پیچیده ای نیاز ندارند آنها به میکروارگانیزنهای مناسب نیاز است . مزیت این فرایند تکنولوژی آن است ، با این حال مقادیر کم سوبستراتها و هزینه بالا مانع از کاربرد صنعتی آن می شود . دوم ، ذرت گندم و سایر غلات که با عملکرد آنزیمها باید به قندهای قابل تخمیر هیدرولیز شوند عمدتاً در صنعت تولید اتانول از آنها استفاده می شود با این حال خطر رقابت برای غلات او وجود درادر . سوم ، مواد سلولزی که باید بوسیله روشهای پیش تیمار نظیر اسید یا آنزیم به قندها تبدیل شوند و اغلب در سراسر جهان از ان ها استفاده میشود . از آنجا که آنها مزایایی چون هزینه پایین مقادیر زیاد و عدم خطر رقابت دارند محققان در تمام دنیا تمایل بسیاری به قابلیت آنها برای تولید اتانول نشان می دهند . منبع ایده آل برای تولید اتانول باید مقرون به حرفه و سرشار از کربن باشد استفاده از ضایعات قابل بازیافت ، ارزان و فراوان برای تولید اتانول توجه محققان را جلب نموده است اما در مورد زباله خانگی مواردی از استفاده از این ماده برای تولید اتانول مشاهده نمی شود . زبالهه ایخانگی که حجم عظیمی از زباله های شهری را تشکیل می دهند . رطوبت بالا و ترکیبات ارگانیکی دارند که به آسانی فاسد شده و حمل آنها دشوار است . از سوی دیگر مواد مغذی فراوان داخل این زباله ها آنها را تبدیل به مواد خام ایده آل برای محصولاتی با ارزشی نظیر اسید لاتیک CH4 ، هیدروژن و ... می سازد . استفاده اززباله خانگی برای تولید اتانول می تواند خطر آلودگی و هزینه تولید اتانول را کاهش دهد از این رو ارزش بررسی شدن را داراست .
علاوه بر استفاده از مواد کم هزینه ، تکنولوژیهای دیگری برای موثر و مقرون به صرفه بودن تولید اتانول انجام شده است نظیر استفاده از گونه هایی با قابلیت تولید اتانول بالا بازیافت سلولی از طریق رسوب یا فقط غشاء . از میان این تکنولوژیها تولید اتانول تحت شرایط غیر استریل می تواند در استریلیزاسیون و پخت نشاسته موثر باشد . علاوه بر این می تواند این فرایند راحتی ساده تر از قبل سازد ، از این رو توجه بسیاری از محققان را جلب نموده است . معمولاً شرایط اسیدی برای جلوگیری از آلودگی بوسیله میکروارگانیزم و عملی ساختن تخمیر غیر استریل ، کنترل می شد . برای تحقق این هدف ، میکروارگانیزم تولید اتانول مقاوم به اسید ، در این مطالعه حائز اهمیت بسیاری است . زیموموناس موبیلس نوعی باکتری تولید کننده اتانول گرم منفی که قادر به تحمل غلظت بالای اتانول و تخمیر در طیف ph گسترده می باشد به نحوی وسیع مورد مطالعه قرار گرفته است . استفاده از ز.موبیلیس مقاوم به اسید در گلوکز تحت شرایط غیر استریل ، با موفقیت انجام شد . در صورتی که بتوان و آیند تخمیر مقرون به صرفه و تولید موثر اتانول بوسیله ز.موبیلیس را در زباله خانگی انجام داد ، می توان این فرآیند را با هزینه کمتر و کارایی بالاتر تولید کرد . علاوه بر این فرآیند ساکاریمیکالیون و تخمیر (ssf) را می توان با ترکیب هیدرولیز آنزیمی و تخمیر اتانول به صورت یک عملیات مجزا تبدیل کرد . در این روش می توان به جای راکتورهای جداگانه از یک مورد استفاده کرد ، و بازداری محصول نهایی از هیدرولیز آنزیمی را از بین برد . قند کاهنده در طول کل فرآیند ، در سطح پایین می ماند که آلوده شدن آن را دشوار می سازد . هدف این مطالعه انتخاب و استفاده از باکتریهای مقاوم به اسید برای تولید اتانول از زباله خانگی بوسیله ssf بود . هر دو فرآیند استریل و غیر استریل برای برررسی امکان تولید اتانول با این گونه ویژه مقایسه شد .
3- نتایج
1. 3 . جداسازی گونه
برای جلوگیری از آلودگی ph پایین 4 در شرایط غیر استریل کنترل شد از این رو تسلط باکتریهای مقاوم به اسید در چنین فرایندی اهمیت بسیاری داشت . هر چند ز.موبیلسین قادر به تخمیر در طیف وسیعی از ph بود (7-3) ، برا ی انجام موفق این فرآیند به باکتریهای مقاوم به اسید با سرعت رشد بالا نیاز است . برای رسیدن به این هدف یک جهش زای انتخابی برای تامین این نیاز ویژه انتخاب شد . ز.موبیلیس رشد یافته ، در محیط انتخابی با ph 4 ، کشت داده شد . سپس کلونی های بزرگ برای تخمیر اتانول تحت شرایط اسیدی انتخاب گردید . همین روند ، برای 3 بار آزمایش ، برای اطمینان از سازگاری این گونه ها با محیط اسیدی انجام شد . سپس گونه با بهترین عملکرد انتخاب شده و در یخچال در دمای c 4 نگهداری شد . از طریق این سیستم انتخاب گونه ای با مقاومت به اسید به نام GZNSL به دست آمده بسته نهایی تخمیر گونه در تصویر 1 ارائه شده است ، آزمایش شاهد با گونه والد در PH اولیه 6 انجام شده و گونه انتخابی در PH 4 استفاده شد . از تصویر می توان مشاهده کرد GZNSL مقاوم به اسید می تواند g/l 48 اتانول تولید کند تنها اندکی کمتر از شاهد (g/l 52 ) که نشان داد GZNSL می تواند تحت شرایط اسیدی با موفقیت اتانول تولید کند . نظیر قند کاهنده ، هردو گونه قادر به تجزیه موثر قند کاهنده بودند . قند کاهنده در حدود 36 ساعت به سطح پایینی می رسد . برای کاستن از زمان کشت ، برای بدست آوردن تولید بیشتر اتانول با زمان کمتر باید تحقیقات بیشتری انجام داد ( تصویر 2 ).
2. 3 . تولید اتانول تحت شرایط غیر استریل
دسته بندی | زمین شناسی |
بازدید ها | 20 |
فرمت فایل | doc |
حجم فایل | 2625 کیلو بایت |
تعداد صفحات فایل | 32 |
عنوان:
ارزیابی رفتار تنش - کرنش سنگها با استفاده
از دستگاه آزمایش خودکنترل
فهرست مطالب
چکیده 1
رفتار شکننده و خمیری 2
مفهوم اندرکنش ماشین – نمونه (مفهوم ماشین ، نرم و سخت) 5
عامل مؤثر در شکست کنترل شده سنگها در ماشین آزمایش 8
اصول و مبانی دستگاههای خود کنترل 16
خلاصه ای از مطالعات انجام شده و نتایج حاصل از آن توسط دستگاه خودکنترل 20
نتیجه گیری 28
خلاصه و پیشنهاد 30
منابع 31
چکیده
مطالعه رفتار سنگ ها بر خلاف بعضی از مصالح مهندسی در محدوده الاستیک خلاصه نمی شود. جهت تعیین رفتار واقعی توده های سنگی، مطالعه رفتار سنگ ها در تمام مراحل بارگذاری حتی پس از نقطه مقاومت نهایی، شکست و خرابی کامل سنگ نیز امری ضروری است. به همین دلیل ارزیابی رفتار و مطالعه جامع سنگ ها در آزمایشگاه توسط دستگاههای عادی آزمایش ( که صرفاً قادر به بارگذاری سنگ تا مقاومت نهایی سنگ هستند) را نمی توان به طور کامل انجام داد و نیاز به دستگاه های پیچیده و پیشرفته و مجهز به امکانات الکترونیکی است. این نوع دستگاه ها در مکانیک سنگ تحت عنوان خود کنترل ( servo- control) مورد استفاده قرار می گیرد. در این مقاله سعی شده است تا حدودی مکانیزم رفتاری سنگ ها در بارگذاری، کاربرد منحنی های کامل تنش- کرنش سنگ ها، انواع آزمایش هایی که توسط این نوع دستگاه ها در دنیا انجام شده است و در پایان اندرکنش ماشین- نمونه، تاثیر سختی ماشین و نمونه در بدست آوردن این نوع منحنی ها و به طور کلی اصول و کلیات دستگاه های خود کنترل به تفصیل پرداخته شود.
کلمات کلیدی: رفتار شکننده، رفتار خمید، خود کنترل، تنش. کرنش، سختی
رفتار شکننده و خمیری
سنگ ها در اثر بارگذاری و اعمال تنش دچار دو نوع شکست می گردند. یکی شکست شکننده است و دیگری رفتار خمیری می باشد
شکست شکننده وقتی اتفاق می افتد که توانایی سنگ در تحمل بار با افزایش تغییر شکل کاهش می یابد. شکست شکننده اغلب مرتبط با تغییر شکل دایمی کوچک یا بدون تغییر شکل دایمی قبل از شکست نهایی بوده و به شرایط آزمایش بستگی دارد که ممکن است به صورت ناگهانی و انفجار گونه رخ دهد. شکست ناگهانی و انفجار گونه سنگها در معادن عمیق و با سنگ های سخت رخ می دهد. در شکل (1) منحنی تنش- کرنش شکننده ارائه شده است.
شکل 1- منحنی تنش- کرنش شکننده در فشار ت محوری
ماده ای دارای رفتار خمیری می باشد که بتواند تغییر شکل دایمی را بدون از دست دادن توان خود در تحمل بار ادامه دهد. اکثر سنگ ها در فشارهای جانبی و درجه حرارت هایی که در کارهای عمرانی و معدنی با آنها مواجه می شویم، رفتاری شکننده دارند. میزان خمیری با افزایش فشار جانبی و افزایش درجه حرارت افزایش می یابد، ولی در سنگ ها هوازده، توده های سنگی شدیداً درزدار و بعضی از سنگ ها مثل سنگ های تبخیری نیز در شرایط معمول مهندسی پدیده خمیری اتفاق می افتد. در شکل (2) منحنی تنش- کرنش خمیری ارائه شده است.
شکل 2- منحنی تنش- کرنش برای رفتار خمیری در فشار
افزایش فشار جانبی، سنگ را به مرحله انتقال از شکنندگی به خمیری می رساند. این مرحله، حدی از فشار جانبی است که رفتار سنگ از نوع شکننده به خمیری کامل انتقال می یابد. بایرلی (3) فشار انتقال از شکنندگی به خمیری را حدی از فشار جانبی تعریف کرده است که در آن تنش مورد نیاز برای تشکیل صفحه شکست در نمونه سنگ برابر با تنشی است که موجب لغزش روی آن صفحه می شود.
دسته بندی | زمین شناسی |
بازدید ها | 21 |
فرمت فایل | doc |
حجم فایل | 340 کیلو بایت |
تعداد صفحات فایل | 57 |
در این قسمت به صورت خلاصه یک برج تقطیر و اجزای آن را مورد بررسی قرار می دهیم در بخش های بعدی به تشریح و توضیح کامل هر یک از اجزای برج تقطیر خواهیم پرداخت .
تقطیر ، در واقع ، جداسازی فیزیکی برشهای نفتی است که اساس آن ، اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج میشود. اولین پالایشگاه تاسیس شده در جهان ، در سال 1860 در ایالت پنسیلوانیای آمریکا بوده است. نفت خام ، از کورههای مبدل حرارتی عبور کرده، بعد از گرم شدن وارد برجهای تقطیر شده و تحت فشار و دما به دو صورت از برجها خارج میشود و محصولات بدست آمده خالص نیستند. انواع برجهای تقطیر در زیر توضیح داده میشوند.
برجهای تقطیر با سینی کلاهکدار
در برجهای تقطیر با سینی کلاهکدار ، تعداد سینیها در مسیر برج به نوع انتقال ماده و شدت تفکیک بستگی دارد. قطر برج و فاصله میان سینیها به مقدار مایع و گاز که در واحد زمان از یک سینی میگذرد، وابسته است. هر یک از سینیهای برج ، یک مرحله تفکیک است. زیرا روی این سینیها ، فاز گاز و مایع در کنار هم قرار میگیرند و کار انتقال ماده از فاز گازی به فاز مایع یا برعکس در هر یک از سینیها انجام میشود. برای اینکه بازدهی انتقال ماده در هر سینی به بیشترین حد برسد، باید زمان تماس میان دو فاز و سطح مشترک آنها به بیشترین حد ممکن برسد.
بخشهای مختلف برج تقطیر با سینی کلاهکدار
بدنه و سینیها: جنس بدنه معمولا از فولاد ریخته است. جنس سینیها معمولا از چدن است. فاصله سینیها را معمولا با توجه به شرایط طراحی ، درجه خلوص و بازدهی کار جداسازی بر میگزینند. در بیشتر پالایشگاههای نفت ، برای برجهای تقطیر به قطر 4ft فاصله میان 50 - 18 سانتیمتر قرار میدهند. با بیشتر شدن قطر برج ، فاصله بیشتری نیز برای سینیها در نظر گرفته میشود.
سرپوشها یا کلاهکها: جنس کلاهکها از چدن میباشد. نوع کلاهکها با توجه به نوع تقطیر انتخاب میشود و تعدادشان در هر سینی به بیشترین حد سرعت مجاز عبور گاز از سینی بستگی دارد.
موانع یا سدها: برای کنترل بلندی سطح مایع روی سینی ، به هر سینی سدی به نام "وییر" (wier) قرار میدهند تا از پایین رفتن سطح مایع از حد معنی جلوگیری کند. بلندی سطح مایع در روی سینی باید چنان باشد که گازهای بیرون آمده از شکافهای سرپوشها بتوانند از درون آن گذشته و زمان گذشتن هر حباب به بیشترین حد ممکن برسد. بر اثر افزایش زمان گذشتن حباب از مایع ، زمان تماس گاز و مایع زیاد شده ، بازدهی سینیها بالا میرود.
برجهای تقطیر با سینیهای مشبک
در برجهای با سینی مشبک ، اندازه مجراها یا شبکهها باید چنان برگزیده شوند که فشار گاز بتواند گاز را از فاز مایع با سرعتی مناسب عبور دهد. عامل مهمی که در بازدهی این سینیها موثر است، شیوه کارگذاری آنها در برج است. اگر این سینیها کاملا افقی قرار نداشته باشند، بلندی مایع در سطح سینی یکنواخت نبوده و گذر گاز از همه مجراها یکسان نخواهد بود.
خورندگی فلز سینیها هم در این نوع سینیها اهمیت بسیار دارد. زیرا بر اثر خورندگی ، قطر سوراخها زیاد میشود که در نتیجه مقدار زیادی بخار با سرعت کم از درون آن مجاری خورده شده گذر خواهد کرد. و میدانیم که اگر سرعت گذشتن گاز از حد معینی کمتر گردد، مایع از مجرا به سوی پایین حرکت کرده بازدهی کار تفکیک کاهش خواهد یافت.
برجهای تقطیر با سینیهای دریچهای
این نوع سینیها مانند سینیهای مشبک هستند. با این اختلاف که دریچهای متحرک روی هر مجرا قرار گرفته است. در صنعت نفت ، دو نوع از این سینیها بکار میروند:
انعطاف پذیر: همانطور که از نام آن برمیآید، دریچهها میتوانند بین دو حالت خیلی باز یا خیلی بسته حرکت کنند.
صفحات اضافی: در این نوع سینیها ، دو دریچه یکی سبک که در کف سینی قرار میگیرد و دیگری سنگین که بر روی سه پایهای قرار گرفته ، تعبیه شده است. هنگامی که بخار کم باشد، تنها سرپوش سبک به حرکت در میآید. اگر مقدار بخار از حد معینی بیشتر باشد، هر دو دریچه حرکت میکنند.
مقایسه انواع گوناگون سینیها
در صنعت نفت ، انواع گوناگون سینیها در برجهای تقطیر ، تفکیک و جذب بکار برده میشوند. ویژگیهایی که در گزینش نوع سینی برای کار معینی مورد توجه قرار میگیرد، عبارت است از: بازدهی تماس بخار و مایع ، ظرفیت سینی ، افت بخار در هنگام گذشتن از سینی ، زمان ماندن مایع بر روی سینی ، مشخصات مایع و ... . چون در صنعت بیشتر سینیهای کلاهکدار بکار برده میشوند، برای مقایسه مشخصات سینیهای دیگر ، آنها را نسبت به سینیهای کلاهکدار ارزیابی میکنند.
برجهای انباشته
در برجهای انباشته ، بجای سینیها از تکهها یا حلقههای انباشتی استفاده میشود. در برجهای انباشته حلقهها یا تکههای انباشتی باید به گونهای برگزیده و در برج ریخته شوند که هدفهای زیر عملی گردد.
ایجاد بیشترین سطح تماس میان مایع و بخار
ایجاد فضا مناسب برای گذشتن سیال از بستر انباشته
جنس مواد انباشتی
این مواد باید چنان باشند که با سیال درون برج ، میل ترکیبی نداشته باشند.
استحکام مواد انباشتی
دسته بندی | زمین شناسی |
بازدید ها | 31 |
فرمت فایل | doc |
حجم فایل | 15 کیلو بایت |
تعداد صفحات فایل | 11 |
موضوع پژوهش
اثرات زباله به محیط زیست
فهرست مطالب
تعریف زباله و انواع آن
کنترل تولید مواد زاید جامد
روشهای جمعآوری زباله و حمل آن
روشهای غیربهداشتی دفع زباله
پیوست
بازیافت
تعریف زباله و انواع آن
به مجموعه مواد ناشی از فعالیتهایی که در محیط سکونت انسان تولید میشود و دست کم از نظر مالکین آن مواد، به صورت جامد بوده و ناخواسته غیر فعال استفاده و دور ریختنی شده اند، زباله یا مواد زاید جامد، گفته میشود. هر چند که سکونتگاههای انسانی حوزه فعالیت انسان هستند، انسان هستند، اما در بستر طبیعی این حوزه سایر جانوران اعم از گیاهان و جانوران نیز به حیات خود ادامه میدهند. زندگی، ادامهی حیات و مرگ این جانوران، همیشه منجر به تولید مواد ناخواستهای میشود که در محیط انسانی زاید تلقی میشوند. اگر چه در محیطی غیر از سکونتگاه انسان، مانند برگهای ریختهی درختان در جنگل، ماده زاید تلقی نشوند، بر اساس تعریف بالا زباله دامنهای بسیار وسیع دارد، اما از آنجا که در برنامهریزیها و تصمیمگیریهای مربوط به مواد زاید، نوع، اندازه، میزان خطر و ... این مواد اهمین زیادی قبلی از توضیح درباره ی هر بحث دیگری، این مواد را طبقه بندی کرده، انواع آن را شناسایی میکنیم. به طور کلی در زبالههای شهری مواد زیر وجود دارند :
پسماندههای مواد غذایی
این نوع از زباله ها، زایدات غذایی باقی مانده از میوهها، سبزیجات، فرآوردههای حیوانی و سایر خوراکیها هستند که در اثر جابه جایی، آمادهسازی، پخت و پز و مصرف غذا تولید میشوند. در مواد زاید شهری ایران، پس ماندههای مواد غذایی درصدی زیاد از زباله ها را تشکیل میدهند- اما کمیت و کیفیت این مواد در طول سال، همواره متغییر است و در ماههای تابستان که مصرف میوه و سبزی بیشتر است به شهری و نظافت معابر و فضاهای عمومی ( نظیر بوستانهای شهری ) هم چنان به عهده شهرداریها باقی ماند.
آشغال
به کلیه مواد فاسد نشدنی- جز خاکستر- آشغال میگویند. آشغال شامل : کاغذ پلاستیک، قطعات پلاستیک، قطعات فلزی، شیشه، چوب و موادی از این قبیل میشود و آن را به دو بخش قابل اشتغال و غیر قابل اشتغال تقسیم میکنند. مواد قابل اشتغال شامل : شیشه، فلز و مواردی از این قبیل است. این مواد از فعالیتهای خانگی و فعالیتهای مؤسسات اداری، تجاری، صنعتی و مانند اینها به دست میآیند.
خاکستر
به مواد باقی مانده از سوختن چوب، زغال سنگ که از فعالیتهای صنعتی، پخت و پز یا گرم کردن منازل حاصل میشود خاکستر میگویند. امروزه با رویکرد مردم به مصرف گاز، نفت و گازوئیل، مورد استفاده و مقدار آن کاهش یافته است. مقدار خاکستر با توجه به موقعیت جغرافیایی محل و در ماههای گوناگون سال متغیر است. خاکسترها اغلب نرم، سبک و
5- مسائلی فرهنگی : آداب و رسوم، میزان توجه شهروندان به حفظ منابع ملی، نگرش آنها بر مسائل بهداشتی، آگاهی به امکان و لزوم بازیافت، وجود تعلیمات مذهبی مانند جلوگیری از اسراف و تببذیر ****و قناعت، در میزان تولید زباله مؤثر است.
کنترل تولید مواد زاید جامد
آژانس حفاظت محیط زیست ( E. P. A )، کاهش از مبدأ را چنین تعریف کرده است: طراحی تولید و استفاده از محصولات به طوری که وقتی این تولیدات به پایان عمر خود میرسند، به کاهش کمیت و سمیت زایدات تولید شده بیانجامد. اکنون کنترل مواد زاید توسط مدیریت مواد زاید جامد چندان عملی نیست به همین دلیل اغلب تولید را یک عضو موظف نمیشناسند. کنترل تولید مواد
دسته بندی | زمین شناسی |
بازدید ها | 30 |
فرمت فایل | doc |
حجم فایل | 337 کیلو بایت |
تعداد صفحات فایل | 30 |
اثر گلخانه ای
25 ژآنویه سال 2005 میلادی روزی است که در تاریخ بشر ثبت شده است و به یاد خواهد ماند چرا که در این روز برای نخستین بار یک گزارش رسمی بین المللی در سراسر جهان منتشر شد که جهانیان را بهت زده کرد در این گزارش آمده که گرمای گلخانه ای خطری که چندین سال است پیرامون آن هشدار داده می شود سرانجام به مرحله حدی و آستانه انفجار خود رسیده است و بشریت می رود تا گام در یک فاجعه جهانی بگذارد.
چرا گازهای گلخانه ای :
آیا تا کنون یک گلخانه دیده اید ؟ گلخانه اتاقک شیشه ای است که گیاهان را در خود محبوس کرده است. نور خورشید به این اتاقک می تابد و پس از عبور از شیشه نیاز گیاهان را به نور آفتاب مرتفع می سازد. مقداری از این نور توسط گیاهان و اشیاء درون گلخانه جذب و مابقی آنها منعکس می شوند ولی در این مرحله شیشه های جداره گلخانه مانع از خروج اشعه های بازتاب شده ، می گردد.
خورشید می تابد و زمین را گرم می کند. بخشی از نور هنگام ورود به جو منعکس می شود و باقی آن وارد اتمسفر شده و به زمین می رسد و آن را گرم می کند. زمین که گرم شده، شروع به تابش می کند. زمین مقداری از این انرژی را جذب می کند و باقی آن را منعکس می نماید. در طی این فرآیند طول موج نور تغییر پیدا می کند. بعضی از گازهای موجود در جو زمین، این تابش خروجی را جذب می کنند. این تابش عمدتا در محدوده مادون قرمز است. مولکول گازهای گلخانه ای، بسیار بیشتر از سایر گازها نور مادون قرمز را جذب می کند. جذب انرژی توسط مولکولهای گاز سبب جنبش مولکول و افزایش انرژی آن می شود. وقتی این اتفاق در مقیاس بزرگ رخ دهد، مانند این است که زمین را با یک پتو پوشانده ایم. دمای کل نواحی زمین افزایش می یابد. این پدیده " اثر گلخانه ای " و گازهایی که در آن موثرند، " گازهای گلخانه ای " نامیده می شوند.
اثر گلخانه ای باعث می شود زمین گرم بماند و حیات روی آن ادامه پیدا کند. متان، دی اکسید کربن، بخار آب و اکسید نیتروژن جزو گازهای گلخانه ای هستند. این گازها هم در طبیعت و هم در فرآیندهای صنعتی تولید می شوند. CFC ها دسته دیگری از گازهای گلخانه ای هستند که فقط در صنعت تولید می گردد.عده ای از دانشمندان معتقدند که اثر گلخانه ای در سالهای اخیر بیشتر شده و زمین در حال گرم شدن است. متان و CFC انرژی بیشتری را به دام می اندازند، اما دی اکسیدکربن مهمترین بخش گازهای گلخانه ای است، زیرا حجم بیشتری از آن در اتمسفر وجود دارد.احتراق سوخت های فسیلی ( زغال سنگ، نفت و گاز ) دلیل اصلی ازدیاد بیش از حد دی اکسیدکربن است.
اما برخی دیگر از دانشمندان با این نظر مخالفند. آنها می گویند که مطالعات انجام شده عموما بر پایه مدلسازی های کامپیوتری است و آب و هوای زمین بسیار پیچیده تر از آن است که بتوان رفتار آن را پیش بینی کرد.
اما مطالعاتی که در سال 2001، توسط تیمی از محققان انگلیسی انجام شد، نشان می دهد که طبق اصلاعات ماهواره ای 30 سال گذشته، تشعشعی که از زمین به فضا فرستاده می شود، کاهش یافته است. این یعنی اثر گلخانه ای همگام با تولید بیشتر گازهای گلخانه ای، افزایش پیدا کرده است.
تحلیل ماجرا آنقدرها هم که به نظر می رسد ساده نیست. گرم شدن زمین و افزایش دی اکسید کربن پدیده های جانبی متعددی را همراه دارد. ذوب شدن یخها سبب می شود که سطح بیشتری از خاک زمین در معرض تابش نور قرار گیرد. پس زمین سریعتر از پیش گرم خواهد شد. از سوی دیگر بسیار محتمل است که با افزایش دما و میزان دی اکسید کربن موجود در جو، گیاهان دی اکسید کربن بیشتری را جذب کنند و این باعث اعتدال شرایط شود.
اما توجیه های دیگران نیز برای تغییر آب و هوا وجود دارد. عده ای بر این باورند که تغییرات ایجاد شده در بادهای خورشیدی ( ذرات بارداری که از خورشید به سمت ما می آیند .) باعث این دگرگونی است. چون تاثیرات آن به مراتب بیشتر از گازهای گلخانه ای است.
گازهای گلخانه ای چه گازهائی هستند ؟
به مجموعه ای از گازها که مقداری از انرژی خورشید را در جو نگه می دارند و باعث گرم شدن جو می شوند گازهای گلخانه ای گویند. این گازها که عموماً از احتراق اکسیدهای فسیلی تولید می شوند در جو مورد نیاز هستند. بطوریکه فقدان این گازها در اتمسفر ، تمام گرمای تابیده شده از خورشید و تشعشعات مادون قرمز را به فضا باز گردانده و زمین 33- درجه سانتیگراد نسبت به دمای کنونی کاهش خواهد داشت ولی آنچه مهم است وجود بیش از حد این گازها در جو می باشد.
دسته بندی | زمین شناسی |
بازدید ها | 26 |
فرمت فایل | doc |
حجم فایل | 51 کیلو بایت |
تعداد صفحات فایل | 25 |
اثر گلخانه ای
گرم شدن زمین یعنی چه؟
میدانیم که کره زمین به طور طبیعی در اثر تابش خورشید گرم میشود، اما اینجا منظور ما از گرم شدن زمین، پدیده دیگری است.این پدیده نسبتا جدید عبارت است از تغییر دمای زمین در اثر فعالیتهای بشری که با تغییرات طبیعی آن فرق دارد. در طول 100 سال گذشته، کره زمین به طور غیرطبیعی 4/0 درجه سانتیگراد گرمتر شده که این موضوع دانشمندان را نگران کردهاست. آنها حدس میزنند فعالیتهای صنعتی در ایجاد این مشکل بسیار موثر است و به گرم شدن کره زمین کمک میکند. منظور از«گرم شدن زمین» افزایش میانگین دمای زمین است. «تغییر آب و هوا» در اثر این افزایش دما به وجود میآید. گرم شدن زمین موجب تغییر الگوی بارش، افزایش سطح آب دریاهای آزاد و کاهش سطح آب دریاچهها و تاثیرات وسیع بر گیاهان، حیات وحش و انسانها میشود.
اثر گلخانه ای چیست؟ گازهای گلخانه ای چه گازهایی هستند؟
به مجموعهای از گازها که مقداری از انرژی خورشید را در جو زمین نگه میدارندو باعث گرم شدن جو میشوند، گازهای گلخانهای میگویند. بخار آب(H2O)، دی اکسیدنیتروژن (NO2)، دی اکسیدکربن (CO2) و متان (CH4) گازهای گلخانهای اصلی هستند. اگر این گازها در جو نبودند، انرژی گرمایی خورشید مجددا به فضا بر میگشت و به این ترتیب هوای زمین 33 درجه سانتیگراد سردتر از الان میشد. اثر گلخانهای به افزایش دمای کره زمین در اثر وجود گازهای گلخانهای در جو زمین گفته میشود. آیا می دانید چرا به این گازها، گازهای گلخانهای میگوییم؟ آیا شما تا حالا یک گلخانه دیده اید؟
گلخانه یک اتاق شیشهای است که نور خورشید از شیشههای آن به داخل میتابد و هوای گلخانه را گرم میکند. اما شیشههای گلخانه اجازه نمیدهند که این هوای گرم از گلخانه خارجشود. جو یا هوایی که در اطراف ماست، شبیه یک گلخانه است. گازهای گلخانهای در جو درست مثل شیشههای گلخانه عمل میکنند. نور خورشید پس از عبور از لایههای گازهای گلخانهای وارد جو زمین میشود. زمانی که نور خورشید به سطح زمین میرسد، مقداری از انرژی گرمایی آن توسط خاک، آب و سایر موجودات جذب میشود. مقداری هم در جو زمین میماند و باقیمانده آن به فضا برمیگردد. اگر مقدار گازهای گلخانهای در جو از حد طبیعی آن بالاتر باشد، انرژی کمتری به فضا برمیگردد، در نتیجه جو زمین گرم تر میشود و به دنبال آن دمای کره زمین بالا میرود. اثر گلخانهای، کره زمین را به اندازهای گرم نگه می دارد که ما انسان ها بتوانیم بر روی آن زندگی کنیم. اما اگر اثر گلخانه ای شدت یابد، ممکن است دمای زمین به قدری زیاد شود که ما و بقیه گیاهان و جانوران نتوانیم گرمای آن را تحمل کنیم. تغییر آب و هوا یعنی چه و اثرات آن چیست؟
اصلا «هوا» و «آب و هوا» با هم چه فرقی دارند؟
هر وقت آسمان صاف باشد و گرمای ملایمی به ما برسد و باد به شدت نوزد، می گوییم هوا خوب است. هر وقت آسمان گرفته باشد، باد تند بوزد یا برف و باران ببارد و ما را دچار زحمت کند، می گوییم هوا بد است. معمولا اخبار هواشناسی ما را از چگونگی وضع هوا آگاه میسازد. هوای برخی مناطق کره زمین معتدل است، یعنی باران به اندازه کافی می بارد و هوا زیاد گرم یا سرد نمیشود. هوای بعضی جاها سرد است یعنی برف میبارد و دمای هوا سرد میشود. جاهایی هم هست که بسیار گرم و خشک است. هر کدام از این جاها یک نوع آب و هوا دارد. برای تعیین آب و هوای هر منطقه، تغییرات دمای هوا و مقدار باران و برف را در طول سال اندازه گیری میکنند. شما هم میتوانید اندازه تغییرات دمای هوا و مقدار باران و برف را در محل سکونت خودتان به دست آورید. اما برای این که آب و هوای جاهای گوناگون را بشناسیم، باید این مقادیر را چندین سال پشت سرهم اندازه گیری کنیم. در نقشه ایران، جای شهرهای بابلسر، شهرکرد، بندرعباس و طبس را پیدا کنید. آب و هوای هر یک از این شهرها نمونه آب و هوای یک ناحیه از کشور ماست. در حال حاضر شرایط آب و هوایی جاهای مختلف در اثر گرم شدن کره زمین در حال تغییر است. مثلا شهری مثل تهران را در نظر بگیرید، تهران در نزدیکی رشته کوه البرز قرار دارد. بنا به تعریف آب و هوا، تهران باید هوای سرد بارانی یا برفی داشته باشد، اما میبینید که به علت تغییر آب و هوا، از هوای سرد بارانی یا برفی چندان خبری نیست!
انسانها چگونه آب و هوا را تغییر میدهند؟
شاید باور نکنید که انسان ها هم میتوانند آب و هوای زمین را تغییر دهند. دانشمندان میگویند اکثر فعالیتهای انسانها گاز گلخانهای تولید میکند. پس از انقلاب صنعتی و اختراع انواع ماشین آلات صنعتی، انسانها بافعالیتهای کشاورزی و صنعتی چهره زمین و آب و هوای آن را دگرگون ساختند. با شروع انقلاب صنعتی روش زندگی مردم عوض شد. قبل از آن مقدار گازهای گلخانه ای در جو کم بود، اما با رشد جمعیت و افزایش استفاده از نفت و زغال سنگ ترکیب گازهای اتمسفر نیز تغییر کرد. بطوریکه در حال حاضر، غلظت گازهای گلخانه ای از حدود 270 واحد به 367 واحد رسیده است. ما برای انجام کارهای خود به انرژی نیاز داریم و این انرژی را از غذا تامین میکنیم. همچنین برای روشنایی و گرم کردن خانههایمان به انرژی نیاز داریم. اتومبیلها برای حرکت به سوخت نیاز دارد. ماشینهای صنعتی نیز به انرژی نیاز دارند. اکثر انرژیهای لازم برای موارد فوق به طور مستقیم یا غیر مستقیم از سوختهای فسیلی مثل نفت و گاز و زغالسنگ بدست میآید.اینهاسوختهایی هستند که سوزاندن آنها گاز گلخانهای آزاد میکند!!! آیا میدانید که چه وقتی گازهای گلخانهای را به هوا میفرستید؟ هر وقت که: · تلویزیون تماشا می کنید، · با کامپیوتر بازی می کنید، · از کولر یا فن کوئل استفاده میکنید، · از استریو ضبط استفاده می کنید، · چراغ را روشن می کنید، · لباسهایتان را می شویید یا اطو میکنید، · سوار اتومبیل می شوید، · غذایتان را در مایکروویو گرم می کنید، · از بخاری گازی یا نفتی استفاده می کنید، · به تولید گازهای گلخانهای در هوا کمک میکنید. چرا؟
چون شما برای انجام این کارها به برق و سوخت نیاز دارید. آیا میدانیداین برق و سوخت از کجا تامین میشود؟
خوب، نیروگاهها زغالسنگ و نفت را می سوزانند تا برق تولید کنند و پالایشگاهها نیز برای تصفیه نفت خام و تولید نفت و بنزین، سوخت مصرف میکنند. سوزاندن نفت و زغالسنگ هم گاز گلخانهای تولید میکند. پس هر چه شما بیشتر برق مصرف کنید، نیروگاهها از سوخت بیشتری استفاده میکنند و در نتیجه گاز گلخانهای زیادتری تولیدمیشود. متان هم یک گاز گلخانهای است. متان چگونه تولید میشود؟
وقتی که شما: · زباله هایتان را به محل دفن زباله می فرستید، · حیواناتی مثل گاو، گوسفند و ... را برای تولید لبنیات و گوشت پرورش میدهید، · در شالیزار برنج میکارید، · زغالسنگ استخراج میکنید. اتومبیلها و کارخانههایی هم که مایحتاج روزانه ما را تولید میکنند، مقادیر زیادی از انواع گازهای گلخانهای را به هوا میفرستند.
دسته بندی | زمین شناسی |
بازدید ها | 23 |
فرمت فایل | doc |
حجم فایل | 42 کیلو بایت |
تعداد صفحات فایل | 33 |
اتمسفر زمین
احتمالا اتمسفر حال حاضر زمین آن اتمسفر اولیه نیست . اتمسفر جاری ما را شیمیدانهای اتمسفر اکسیداسیون می خوانند ،در حالیکه اتمسفر اولیه را شیمیدانها اتمسفر در حال کاهش می خواندند. مشخصا گویا اتمسفر اولیه در بر دارنده اکسیژن نبوده است.
ترکیب اتمسفر
اتمسفر اولیه ممکن است مشابه ترکیب سحابی خورشیدی 0توده های عظیم گاز و گرد و غبار ما بین فواصل ستارگان راه شیری) و نزدیک به ترکیب حاضر سیاره های بزرگ گازی بوده است ، اگر چه این بستگی به جزئیات فشرده شدن سیارات از سحابی های خورشیدی دارد. آن اتمسفر در فضا گم شده بود و با گاز خارج خارج شده از پوستر و یا (در برخی از تئوریهای اخیر ) بیشتر اتمسفر ممکن است از برخوردهای دنباله دارها و دیگر مواد با فشار بخار زیاد جابجا شده است. اکسیژن موجود در اتمسفر که جزء خصوصیات ان است بوسیله گیاهان تهیه شده است. (خزه دریایی سبز – آبی و یا سیانو باکتری ) بنابراین ، ترکیب حال حاضر اتمسفر شامل 7960 نیتروژن ، 25% اکسیژن و 1% گازهای دیگر می باشد.
لایه های اتمسفر
همانند آنچه در مشکل زیر نشان داده است ممکن است اتمسفر زمین به چندین لایه مجزا تقسیم بشود.
لایه های اتمسفر زمین
تروتسفر : تروتسفر جایی است که همه آب و هواها واقع می شوند. آن منطقه بالا و پایین رفتن بسته های هوا می باشد. فشار هوا در بالای تروتسفر فقط 100% سطح دریا می باشد. منطقه حائل نازکی بین تروتسفر و لایه بعدی وجود دارد تروپوپاز خوانده می شود.
لایه ازن و استراتوسفر : در بالای تروپسوسفر ، استراتوسفر قرار دارد که جریان هوایی تقریبا افقی است. لایه نازک ازن در استراتوسفر بالایی دارای فشردگی بالایی از ازن است. که به شکل اکسیژن یافته است. وظیفه اصلی این لایه جذب اشعه ماوراء بنفش خورشید است. تشکیل این لایه یک وضعیت حساس است. از آنجایی که فقط می تواند ازن شکل گیرد و از جریان شدید اشعه ماوراء بنفش و از رسیدن آن به سطح زمین جلوگیری به عمل آورد که که اکسیژن تولید شده باشد. که این اشعه برای سیر تکاملی یک خطر محسوب می شود. در حال حاضر این نگرانی وجود دارد که ترکیبات فلئور کربن ساخته دست بشر ممکن است لایه ازن را از بین ببرد. و همچنین برای نتایج مهلکی که برای آینده زندگی بشر رخ می دهد نگرانی هایی موجود است.
مزوسفر و یونوسفر
در بالای استراتوسفر مزوسفر است و در بالای آن نیز یونوسفر (یا ترموسفر ) است که خیلی از اتمها یونیزه شده اند. (یا الکترونها را از دست داده اند و یا با آنها تقویت شده اند بنابراین دارای بار الکتریکی خالص هستند). یونوسفر خیلی نازک است اما جایی است که شفق قطبی رخ می دهد و مسئولیت جذب پر انرژی ترین فوتون ها از خورشید را بر عهده دارد. از وظایف دیگر آن انعکاس امواج رادیویی که بدان وسیله ارتباطات رادیویی دور و بر را ممکن می سازد می باشد. ساختار یونوسفر بوسیله باد ذره باردار شده خورشیدی (باد سحابی) قویا تحت تاثیر قرار می گیرند ، که به نوبت بوسیله سطح فعالیت خورشیدی کنترل می شوند. یک اندازه از ساختار یونوسفر چگالی الکترون آزاد است ، که شاخصی از میزان یونیزاسیون است. در اینجا نقشه های شمارش چگالی الکترون یونوسفر برای ماههای 1957 تاکنون موجود است. این شبیه سازی های متغیر با ماه یونوسفر را برای سال 1995 (دوره ای از فعالیت خورشیدی بالا با لکه های خورشیدی زیاد) و 1996 (دوره ای از فعالیت خورشیدی کم با لکه های خورشیدی کم ) مقایسه کنید.
چگالی الکترون : انیمیشن های مجاور تغییرات یونوسفر در ماه را در دو سال متفاوت شبیه سازی می کند.
(تصویر بالایی ) سال 1990 که دوره فعالیت های خورشیدی بالا با لکه های خورشیدی زیاد است(150)
(تصویر پایینی ) سال 1996، که دوره فعالیت خورشیدی پایین با لکه های خورشیدی کم (10) می باشد. رسم ها شمارش چگالی الکترون را نشان می دهد که شاخص مقدار یونیزاسیون در اتمسفر هستند. زردها و قرمزها یونیزاسیون بزرگتر و آبی ها و سبزها یونیزاسیون کوچکتر را نشان می دهند. به تفاوت های ذاتی متفاوت در این دو انیمیشن توجه کنید ، با یونیزاسیون جوی قوی تر در تصویر بالایی (خورشید فعال سال 1990) نسبت به تصویر پایین تر (خورشید کامل سال 1996)
تصاویر مجاور بر اساس نقشه های شمارش چگالی الکترون یونوسفر برای ماههای سال 1957 تا بحال هستند. انیمیشن های بیش تر را می توانید در راهنمای NOAA (آژانسی در ساختمان تجارت که نقشه اقیانوسها را ترسیم می کند و از منابع حیاتی آنها محافظت می کند) بیابید. به تفاوتهای ذاتی میان این دو انیمیشن توجه کنید که مرتبط با تاثیر قوی فعالیت خورشیدی روی ساختار یونوسفر زمین است.
ترکیبات اتمسفر
هوا مخلوطی از گازهای مختلف است. گر چه اتمسفر زمین ظاهرا به دلیل ماهیت گازی شکل خود بی وزن به نظر میرسداما در واقع دارای جرمی به مقدار تن می باشد. به استثنای بخار آب نسبت اختلاط گازهای تشکیل دهنده هوا تا ارتفاع 60 کیلومتری تقریبا ثابت است. حدود 99 درصد حجم هوای زمین را دو گاز عمده ازت و اکسیژن تشکیل می دهد که ازت 78 درصد ، پیکره اصلی اتمسفر زمین می باشد بعد از آن اکسیژن قرار دارد و سایر
دسته بندی | زمین شناسی |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 118 کیلو بایت |
تعداد صفحات فایل | 46 |
آییننامه ایمنی معادن
فصل اول - تعاریف:
1 – مسئول معدن یا سرپرست معدن:
شخصی است که توسط دارنده پروانه عملیات به این سمت منصوب میشود و مسئولیت کلیه عملیات معدن را به عهده دارد.
2 – مسئول فنی:
طبق ماده 66 آیین نامه اجرایی قانون معادن مسئول فنی عملیات کسی است که اداره کلیه امور فنی معدن به عهده اوست و توسط دارنده پروانه عملیات از میان افراد واجد شرایط انتخاب و به وزارت صنایع و معادن معرفی میشود و طبق ماده 65 آیین نامه اجرایی ضوابط و حدود صلاحیت مسئولین فنی معادن تا تصویب و ابلاغ قانون نظام مهندسی معدن توسط وزارت معادن و فلزات تعیین میشود.
3 – مسئول ایمنی:
مسئول ایمنی هر معدن نظارت بر ایمنی عملیات معدن را به عهده داشته توسط مسئول یا سرپرست معدن به این سمت منصوب میشود. طبق ماده 65 آیین نامه اجرایی قانون معادن ضوابط و حدود صلاحیت مسئول ایمنی از طریق وزارت کار و امور اجتماعی با هماهنگیوزارت صنایعومعادن تعیینمیشود.جانشینمسئول ایمنی نیز تابع همینشرایط است.
4 – مهندس ناظر:
شخصی است که طبق ماده 69 آیین نامه اجرایی قانون معادن تعیین میشود و از طرف وزارت صنایع و معادن مامور نظارت و کنترل عملیات معدنی است.
5 – پروانه اکتشاف – پروانه بهره برداری:
طبق مواد مندرج در قانون معادن و آیین نامه اجرایی آن تعریف میشود.
6 – تونل:
حفاری زیرزمینی افقی یا تقریباً افقی است.
7 – تونل شیب دار:
تونلهایی که تا حدود 18 درجه شیب داشته باشند.
8 – چاه مایل:
حفاری مایلی که به سطح زمین راه داشته و دارای شیب بین 18 درجه تا 90 درجه باشد و برای باربری مورد استفاده قرار میگیرد.
9 – چاه یا چاه قائم:
حفاری قائم یا با شیب 90 درجه است که به سطح زمین راه داشته باشد و معمولاً برای باربری مورد استفاده قرار میگیرد.
10 – دویل:
حفاری زیرزمینی شیب دار و با سطح مقطع نسبتاً کوچک که معمولاً به طرف بالا حفاری میشود و برای منظورهای مختلف مورد استفاده قرار میگیرد.
11 – پذیرگاه:
محل توقف، بارگیری و تخلیه واگنها و انجام وظایف مختلف زیرزمینی که معمولاً در محل ارتباط با چاه قائم یا چاه مایل در زیرزمین احداث میشود.
12 – گالری – راهرو:
انواع حفاریهای زیرزمینی و معمولاً با طول زیاد است.
13 – راه مورب:
به انواع راهروهای شیب دار راه مورب گفته میشود.
14 – بونکر:
محلی برای تخلیه و انباشت سنگ میباشد.
15 – چال:
سوراخی که در سنگ برای قراردادن ماده منفجره حفر میشود.
16 – خرجگذاری:
قراردادن مواد منفجره در داخل چال است.
17 – فشنگ:
به هر قطعه ماده منفجره جامد (معمولاً انواع دینامیت) گفته میشود.
18 – آتشباری:
به عملیات خرجگذاری و انفجار مواد منفجره برای تخریب سنگ آتشباری گفته میشود.
19 – آتشبار:
شخصی که مسئولیت عملیات آتشباری را به عهد دارد.
20 – مواد ناریه – مواد منفجره:
موادی که قابلیت انفجار داشته و در معدن برای تخریب سنگ مورد استفاده قرار میگیرد.
21 – گاز ذغال:
گازی که درکانسارهای ذغالسنگ همراه با سایر هیدروکربورها وجوددارد و عمدتاً از متان تشکیل شدهاست. اینگاز چنانچه بهنسبت معینی با هوا مخلوطشود قابلیتانفجارپیدا میکند.
22 – کلیه تجهیزات، دستگاهها و ماشین آلات معدنی که در این آیین نامه از آنها نام برده شده:
مانند شاول یا بیل مکانیکی، لودر، بلدوزر، پرفراتور، گریدر، واگن، لوکوموتیو، دستگاه گمانهزنی، دستگاه سیم برش، بالا بر چاه، وینچ و غیره و کلیه قسمتها و قطعات آنها مطابق تعاریفی است که در متون و کتابهای معدنی آورده شده است.
فصل دوم – کلیات
ماده 1: منظور از عملیات در این آیین نامه کلیه عملیات معدنی (اعم از اکتشاف یا بهرهبرداری و استخراج معدن) است که در قانون معادن و آیین نامه اجرایی قانون معادن پیشبینی شده است.
ماده 2: درکلیه معادن که دارای حداقل 25 نفر کارگر میباشند، میبایست یک نفر ذیصلاح به عنوان مسئول ایمنی و یک نفر به عنوان مسئول بهداشت حرفهای به استناد آییننامه کمیته حفاظت فنی و بهداشت کار تعیین گردد. بدیهی است در معادن کمتر از 25 نفر کارگر وجود یک نفر مسئول ایمنی ضروری است، اما این مسئولیت را میتوان به مسئول فنی واگذار کرد که تعیین صلاحیت وی به استناد آیین نامه فوق الذکر خواهد بود.
ماده 3: مسئول ایمنی هر معدن به عنوان ناظر و کنترل کننده عملیات و انطباق دادن معدن با بندهای مندرج در این آیین نامه و دیگر آیین نامههای مصوب شورایعالی حفاظت فنی تعیین میگردد، که با حضور و بارزسی از معدن توصیهها و پیشنهادهای خود را جهت پیشیگیری و رفع خطر تذکر داده و در صورت حساسیت موضوع آن را کتباً به مسئولین معدن گزارش مینماید و در صورت تشخیص خطر حتمی برابر مقررات این آیین نامه تا رفع خطر نسبت به توقف عملیات در محل خطر اقدام نماید.
ماده 4: کلیه کارگاههای معدنی اعم از سطحی یا زیرزمینی لازم است در هر شیفت کاری حداقل یک بار توسط مسئول ایمنی یا جانشین وی مورد بازدید قرار گیرد.
ماده5: قبل ازشروع بهکار در هرشیفتکاری مسئول ایمنی معدن و یا جانشین او باید از کارگاه مربوطه بازدیدنماید و پساز اطمینان ازایمن بودن آنبهکارگرانمجوز ورودداده شود.
ماده 6: وزارت صنایع و معادن میبایست رونوشت پروانههای اکتشاف و بهره برداری را به وزارت کار و امور اجتماعی ارسال نماید و دارنده پروانه اکتشاف یا بهره برداری مکلف است تاریخ شروع عملیات خود را به وزارتخانههای معادن و فلزات، کار و امور اجتماعی (ادارات کل کار و امور اجتماعی) اطلاع دهد.
ماده 7: اکتشاف کننده یا بهره بردار باید مدارک مشروحه زیر را در سر معدن نگهداری کرده و برای ارایه به مهندسین ناظر وزارت صنایع و معادن و بازرسان کار وزارت کار و امور اجتماعی آماده داشته باشد.
الف – پروانه اکتشاف یا پروانه بهره برداری یا کپی آنها.
ب – نقشه محدوده به مقیاس حداقل و نقشه بهره برداری به مقیاس حداقل و برای معادنی که عملیات زیرزمینی دارند، نقشه به مقیاس حداقل از قسمت درون معدن و همچنین یک نقشه از کارگاهها و تاسیسات خارج معدن به مقیاس حداقل.
ج – دفتر حاوی مشخصات کارکنان معدن و استخراج روزانه طبق نمونهای که وزارت صنایع و معادن تعیین خواهد کرد.
د – دفتر مخصوصی جهت ثبت نظرات و تذکرات و دستوراتی که در اجرای آیین نامههای مربوط نسبت به طرز کار و رعایت اصول فنی و حفاظت و بهداشت کار و سایر مواردی که از طرف مهندسین ناظر وزارت صنایع و معادن و بازرسان کار وزارت کار و امور اجتماعی داده میشود.
هـ – دفتر مخصوص ثبت حوادث و گزارش اقدامات معموله طبق نمونهای که از طرف وزارت کار و امور اجتماعی تعیین میشود.
و – دفاتری مخصوص جهت ثبت کلیه اقدامات ایمنی و بهداشت کار که به ترتیب توسط مسئول ایمنی و مسئول بهداشت حرفهای که در اجرای آیین نامهها و مقررات مربوطه تکمیل میگردد.
ز – آیین نامه ایمنی معادن و کلیه آیین نامههای حفاظتی فنی و بهداشت کار مصوب شورای عالی حفاظت فنی.
ماده 8: رعایت مفاد کلیه مقررات و آیین نامههای مصوب شورای عالی حفاظت فنی درخصوص نکات ایمنی مرتبط با لوازم، کالاها و تجهیزات معدنی لازم الاجرا است.
تبصره – کلیه سفارشات و نکات احتیاطی و ایمنی که از طرف سازندگان و تولیدکنندگان لوازم، کالاها و تجهیزات معدنی توصیه میشود لازم الاجرا است.
ماده 9: تمام شاغلین در معادن زیرزمینی و کارگرانی که با تغییر شغل از قسمتی به قسمت دیگر معدن منتقل میشوند باید با راههای خروجی و اضطراری معدن آشنا شده و آگاهی کامل پیدا کنند.
ماده 10: ورود کلیه افراد غیرشاغل در معدن منوط به کسب اجازه از سرپرست معدن یا جانشین وی میباشد.
ماده 11: ورود و کار در کارگاهها و معادن زیرزمینی متروکه منوط به کسب مجوز از سرپرست معدن یا مسئول ذیربط بوده و باید با رعایت مقررات ایمنی و پس از حصول اطمینان از برقراری تهویه مناسب و سالم بودن وسایل نگهداری و عدم ریزش حفریات انجام گیرد.
ماده 12: با تمهیداتی که از طرف سرپرست معدن انجام میگیرد، بایستی همواره تعداد و اسامی کارکنانی که در هر لحظه داخل معدن و بخصوص زیرزمین بوده مشخص باشد و تا زمانی که کارگران در زیرزمین مشغول کار هستند حداقل یک نفر از مسئولین میبایست در دفتر سرمعدن حضور داشته باشد.
ماده 13: محل یا محلهای حادثه ساز در معدن باید بوسیله سیم خاردار یا وسایل محصورکننده مناسب و علائم اخباری و هشدار دهنده از محلهای مجاور مجزا باشد به طوری که مانع عبور اشخاص متفرقه و حیوانات گردد.
ماده 14: معادن زیرزمینی (به استثنای جبهه کارهای در حال حفاری) باید به وسیله حداقل
دو راه با شرایط زیر به خارج ارتباط داشته باشد.
دسته بندی | زمین شناسی |
بازدید ها | 16 |
فرمت فایل | doc |
حجم فایل | 320 کیلو بایت |
تعداد صفحات فایل | 21 |
چهار لایه زمین:
زمین از چهار لایه متفاوت تشکیل شده است. بسیاری از زمین شناسان معتقدند که زمین در مرکز خود از مواد سنگینتر و با چگالی بیشتر تشکیل شده است و مواد سبکتر به سمت بالا حرکت می کنند. زیرا پوسته زمین غالبا از مواد سبکتر(سنگهای بازالت و گرانیت) ساخته شده در حالیکه هسته آن شامل فلزات سنگین(نیکل و آهن) است.
پوسته لایه ای است که شما بر روی آن زندگی می کنید، این لایه به خوبی مطالعه و درک شده است. گوشته بسیار گرمتر از پوسته است و توانایی جریان زیادی دارد. هسته های درونی و بیرونی همچنان گرمتر هستند و فشار وارده در مرکز زمین به اندازه ای است که شما می توانید به وسیله آن، یک توپ را به یک تکه سنگ مرمر تبدیل کنید.
پوسته:
پوسته زمین، شبیه پوسته یک زمین است. این لایه نسبت به سه لایه دیگر، بسیار نازکتر است. پوسته، در محل اقیانوسها(پوسته اقیانوسی)تنها حدود 5-3 مایل(8کیلومتر) ضخامت دارد و در قاره ها(پوسته قاره ای) حدود25 مایل(32کیلومتر) ضخامت دارد. درجه حرارت پوسته از درجه حرارت هوا در بالاترین بخش آن، تا 1600درجه فارنهایت(870 درجه سلسیوس) در عمیق ترین بخش پوسته تغییر می کند. شما می توانید یک قرص نان در تنور(اجاق) خودتان در حرارت 350درجه فارنهایت) بپزید. در حرارت 1600درجه فارنهایت،سنگها شروع به ذوب شدن می کنند. پوسته زمین به قطعاتی که ورقه نامیده می شوند، تقسیم شده است. ورقه ها نیز بر روی یک گوشته پلاستیکی نرم که زیر پوسته قرار گرفته اند شناورند. این ورقه ها معمولا به آرامی حرکت می کنند ولی اغلب، به هم می چسبند و فشار زیادی را ایجاد می نمایند. فشار ایجاد شده و سنگها خمیده می شوند تا حدی که بشکنند. به هنگام رخداد این پدیده، زمین لرزه ایجاد می شود. به ضخامت کم پوسته، در مقایسه با سایر لایه ها توجه کنید. کلا هفت ورقه اقیانوسی و قاره ای بر روی گوشته ای که از مواد داغتر و با چگالی بیشتری تشکیل شده است،شناور می باشند.
پوسته از دو نوع سنگ اصلی تشکیل شده است، گرانیت و بازالت. پوسته قاره ای بیشتر از گرانیت تشکیل شده در حالیکه پوسته اقیانوسی شامل نوعی از سنگهای آتشفشانی، که بازالت نامیده می شوند، می باشد.
سنگهای بازالتی ورقه های اقیانوسی،چگالی بیشتری داشته و از سنگهای گرانیتی ورقه قاره ای سنگینتر هستند. شاهد این قضیه نیز، رانده شدن پوسته قاره ای بر روی پوسته سنگینتر اقیانوسی در طی برخورد ورقه ها می باشد. پوسته و قسمت بالایی گوشته، پهنه ای از سنگهای صلب و شکننده را ایجاد می کنند که سنگ کره(لیتوسفر) نامیده می شود. لایه پایینی سنگ کره صلب، پهنه ای با محتویات قیرمانند است که سست کره(آستنوسفر) نام دارد. سست کره، بخشی از گوشته است که جریان دارد و ورقه ها بر روی آن حرکت می کنند.
گوشته:
گوشته لایه ای است که مستقیما بر روی سیما قرار دارد. این لایه بزرگترین قسمت زمین است که حدود 1800مایل ضخامت دارد. گوشته از سنگهای بسیار داغ و چگال تشکیل شده است. این لایه سنگی، شبیه قیر جریان می یابد. این جریان در اثراختلاف زیاد درجه حرارت از کف تا بالای گوشته می باشد. حرکت گوشته، دلیل حرکت ورقه های زمین است. درجه حرارت گوشته، از 1600درجه فارنهایت در بالای آن تا 4000درجه در قسمتهای قاعده ای اس، تغییر می کند.
جریانهای همرفتی:
گوشته از مواد بسیار چگالتر و با ضخامت بیشتر ساخته شده است. ورقه ها بر رو ی آن مانند روغنی که بر روی آب شناور است، شناورند. بسیاری از زمین شناسان معتقدند که گوشته به سبب وجود جریانهای همرفتی،جریان دارد.
جریانهای همرفتی، به علت وجود موادبسیار داغی است که از عمیق ترین قسمت گوشته بالا می آیند سپس سرد شده، دوباره پایین رفته، سپس داغ شده و باز بالا می آیند و این چرخه بارها و بارها ادامه می یابد.
دسته بندی | زمین شناسی |
بازدید ها | 34 |
فرمت فایل | doc |
حجم فایل | 149 کیلو بایت |
تعداد صفحات فایل | 28 |
زمین شناسی پزشکی (interdisciplinary science)
"زمین شناسی پزشکی" علمی است که به بررسی ارتباط بین عوامل زمین شناسی با سلامت انسان ها و جانوران و تأثیر عوامل زیست محیطی بر پراکندگی جغرافیایی بیماری های مرتبط می پردازد.بنابراین زمین شناسی پزشکی موضوعی گسترده و پیچیده است که برای شناسایی، کاهش یا حل مشکلات موجود نیاز به ارتباط با رشته های مختلف علمی دارد.فلزات و نافلزات اگر به مقادیر غیرطبیعی وارد بدن شوند منجر به بروز مشکلات قابل توجهی می گردند. گروهی از فلزات برای سلامتی ما سودمند و گروهی دیگر مضر هستند. فعالیت های انسانی (از هر نوع) باعث انتقال فلزات از جایگاه هایشان به مکان هایی می شود که در آینده برای سلامت انسان ها و جانوران مشکلاتی را به وجود خواهند آورند. این مشکلات در مکان هایی که بارندگی های اسیدی روند دسترس پذیری فلزات سنگین (مانند جیوه) و در نتیجه جذب آنها در زنجیره غذایی را تسهیل می کند، تشدید می شوند. به علاوه باران های اسیدی در این مکان ها باعث عدم دسترسی موجودات زنده به برخی از عناصر کم مقدار مانند سلنیم می شوند
عناصر سمی موجود در خاک و سنگ حاصل واکنش های ژئوشیمیایی طبیعی یا فعالیت های انسانی هستند و معمولا بر سلامتی انسان اثر می گذارند؛ در واقع این عناصر از طریق غذا یا نوشیدنی وارد بدن می شوند. اگرچه در بسیاری از مناطق فقط از غذاهای محلی استفاده می شود ولی جوامع صنعتی مدرن اغلب خواهان غذاهای متنوعی هستند که در مناطق جغرافیایی مختلف تولید می شود. آب آشامیدنی معمولا به طور محلی تأمین می شود و عمدتا متأثر از ژئوشیمی محلی است. ورود بیش از اندازه برخی از ترکیبات غیرآلی به بدن از طریق آب های آشامیدنی باعث بروز مشکلاتی در برخی از کشورها شده است . از بیماری های جهانی مربوط به زمین شناسی پزشکی می توان به گواتر (کمبود ید) و بیماریهای مربوط به فزونی یا کمبود عناصری خاص مانند فلورین یا سلنیم اشاره کرد. بیماریهای قلبی-عروقی مرتبط با سختی آب (متأثر از محیط های جغرافیایی) نیز یکی دیگر از موضوعات زمین شناسی پزشکی است
بسیاری از سنگ ها دارای سطوح بالای اورانیوم هستند مانند شیل های زاجی، گرانیت های خاص و پگماتیت ها. تنفس یا بلع مقادیر غیر عادی گاز رادیواکتیو رادون که از منابع طبیعی رادیواکتیو در چنین سنگ هایی ایجاد می شود، خطری مهم برای سلامت عموم محسوب می شود. آمار سرطان های ریه ناشی از رادون رو به افزایش است. مطالعات اخیر نشان داده است که نوشیدن آب مملو از رادون خطرات قابل توجهی را برای انسان ها به خصوص گروه های خاص مانند کودکان و افراد سالخورده به وجود می آورد. میزان رادون موجود در آب مستقیما به شرایط جغرافیایی محلی مرتبط می شود.
با توجه به کمبود برخی از عناصر( روی، آهن، ید و …)، بالابودن سطوح رادیواکتییته طبیعی(رادون) در برخی نقاط شمالی کشور، معضلات بهداشتی در دام ها ناشی از کمبود مس در برخی نقاط کشور، وجود آنومالی های ژئوشیمیایی در بسیاری از نقاط کشور و … انجام مطالعات زمین شناسی پزشکی در ایران ضروری به نظر می رسد
به این ترتیب در این گزارش مهمترین بیماریی های که از سراسر دنیا گزارش شده اند و منشا آنها فاکتورهای زمین شناسی است معرفی شده است. بیماری های فلورزیس ، گواتر، کرتینیسم، بلک فوت، کشان، کاشین بک، سرطان ریه، آسیب دیدگی های سیستم عصبی و ناهنجاری در حیوانات با آلودگی ناشی از عناصر در ارتباط بوده اند که به تفصیل مورد مطالعه قرار گرفته است. در ادامه مطلب به توضیح دقیق زابطه عناصر در طبعت و بیماری ها و نقش زمین شناسی در سلامت انسان پرداخته ام :
مطالعه بیماری ها امکان ارائه راه حل های مناسب برای پیشگیری یا درمان آنها را فراهم می کند. بر این اساس پس از بررسی ارتباط بیماری ها و عناصر، روش های نوینی که برای تعیین پراکندگی عناصر در برخی کشورها بکار می رود معرفی شده است.
تلاش های علمی هماهنگ بین علوم زمین، زندگی و بهداشت می تواند به عنوان یکی از بهترین روش های ارتقاء سلامت جوامع در حال و آینده باشد. نمونه های جهانی مستندی از تاثیرات آرسنیک، زغال سنگ ، آب های اسیدی، گرد و خاک بر سلامتی یافت شده است. این نمونه ها چگونگی ارتباط مخاطرات ژئوشیمیایی و فرایندهای طبیعی را توضیح می دهند و به این نکته می پردازند که ممکن است تغییرات صورت گرفته به دست انسان به جای چاره سازی، منجر به بیماری شود
.راه حل های موثر برای مبارزه با مخاطرات زیست محیطی و جلوگیری از تکرار چنین اشتباهاتی هنگامی ایجاد می شود که بسیاری از افراد صاحب نظر هنگام تصمیم گیری های مهم ، روابط متقابل انسان با محیط و ضرورت فعالیت های جهانی و جامع علوم زمین و بهداشت را کاملا درک کنند.
به علت اهمیت تاثیر فاکتورهای زمین شناسی و پراکندگی جغرافیایی بر بیماری
دسته بندی | زمین شناسی |
بازدید ها | 19 |
فرمت فایل | doc |
حجم فایل | 218 کیلو بایت |
تعداد صفحات فایل | 28 |
تعریف زلزله
برای شناخت هر پدیده ای درجهان واقع لازم است ابتداازآن تعریف مناسب ونسبتاً جامعی داشته باشیم ، چرا که بدون دانستن تعریفی مناسب ازآن نمی توان به پدیده پی برد وآن رابه خوبی درک نمود.
مردم عامی درکلامی ساده زلزله راحرکت ناگهانی زمین ناشی ازخشم نیروهای ماوراء الطبیعه وخدایان می دانند که بر بندگان عاصی وعصیانگر خودکه نافرمانی خداخود را نموده ومرتکب گناهان زیادی شده اند می داننــد .
اگر چه امروزه با گسترش دانش تجربی این تعریف در زمره اباطیل وخرافات قرارگرفته ،ولی هنوز در جوامع ومردم کم دانش وجاهل مورد قبول است.
درفرهنگ تک جلدی عمید زلزله را با فتح حروف « زَ» و « لَ » یعنی زَلزلَه برخلاف آنچه در زبان عامه مردم رایج است ، آورده ومی نویسید :
« زمین لرزه ، لرزش وجنبش شدید ویا خفیف قشر کره زمین که به نقصان درجه حرارت مواد مرکزی واحداث چین خوردگی وفشار یادر اثر انفجارهــای آتشفشانی بوقوع می رسد»
در فرهنگ جغرافیا تالیف پریدخت فشارکی وهمچنین در فرهنگ جغرافیائی تالیف مهدی مومنی تعریفی مشابه هم به گونه زیر ارائه شده است:
« جنبش یا تکان پوسته زمین که به صورت طبیعی ناشی از زیر پوسته زمین است بعضی وقتها زلزله باعث تغییراتی در سطح زمین می شود ، اما اغلب زیان بوجود آمده ناشی ازتکان ها فقط محسوس است وممکن است زلزله بوسیله یک انفجار آتشفشانی بوجود آید. زلزله در حقیقت در بیشتر نواحی آتشفشانی امری عادی است واغلب قبل ویا همزمان با انفجار اتفاق می افتد . اصل زلزله تکتونیکی است واحتمالاً وجود یک شکست لازمه آن است . موجهای زلزله دست کم در سه جهت اتفاق می افتد ودر یک مسافت قابل ملاحظه از مکان اصلی بطور جداگانه حس می شوند . وقتی امواج زلزله ازمکانی می گذردزمین وساختمانها می لرزند وبه جلووعقب می روند .بالاترین زیان ناشی اززلزله همیشه در مرکز زلزله یعنی جائی که حرکت بالاوپائین است نیست اما در مکان هائی که موجهای زلزله بصورت مایل به سطح می رسد ونزدیک مرکز زلزله باشند دارای بالاترین زیان می باشند .یک زلزله شدید معمولاً بوسیله یکسری دیگر ازتکانها همراه می شود .زلزله ای که که در نزدیک یازیردریا اتفاق می افتد سبب حرکات شدیدآبها شده وبعضی وقتها امواج بزرگی ازآن ناشی می شود ودر مسافت زیاد این امواج ادامه پیدا می کنند وگاهگاهی باعث تلفات جبران ناپذیر ومرگ ومیرمی شوند .طغیان نواحی ساحلی بیشتراز خود زلزله باعث خسارت می شوند ، در نواحی آتشفشانی زلزله عملاً هر روز اتفاق می افتد. به عنوان مثال در هاوائی هرساله صدهاتکانهای کوچک ثبت می شوند »
درفرهنگ گیتا شناسی تالیف عباس جعفری آمده است:
«جنبش سریع ومحسوسی که درنتیجه جابجائی ویا جایگیری تخته سنگهای زیر پوسته زمین پدیدمی آید، در نتیجه این جنبش یک سری لرزش های موجی شکل پدید می آیدوگاه تغییرات ارتفاعی پوسته زمین راباعث می گردد واغلب ضایعات وزیان های جانی وفراوانی ازخود برجا میگذارد.زمین لرزه بیشترمخصوصنواحی آتشفشانی بودهوگاه باخروشوفوران کوههای آتشفشانیهمراهمی گرددودرحالات شدیدشکستهاوبریدگیهای مهم ومشخص درروی پوسته زمین ازخودبجای میگذارد.
غالب زمین لرزه ها حداقل با سه نوع موج لرزاننده همراه است .در مرکز وقوع زمین لرزه سه موج مزبور بطور همزمان اثرگذارده وساختمانهاوتأسیسات واقع دراین منطقه رابا نوسان های شدید به عقب و جلوومیبرد و حد اکثر خسارت و زیان در محلی که امواج مزبور بطور مورب به سطح زمین می رسندوارد می سازد.... »
« محمود صداقت درکتاب“ زمین شناسی برای جغرافیا ” تعریفی بدینگونه ارائة می دهد:
زمین لرزه عبارت است ازحرکات ولرزش های ناگهانی و گذرا در زمین که از ناحیه محدودی منشأ می گیرد و ازآنجا درتمام جهات منتشر می شوند . »
در کتاب فیزیکال جئوگرافی آمده است:
« زلزله یکسری ازتکانها ولرزشهای ناگهانی که از آزاد شدن فشار در طول گسل های فعال ودر مناطق آتشفشانی فعال ناشی می شود.تکانها ولرزشهای سطح زمین که در ارتباط با حرکات پوسته زمین در زیر زمین می باشد. »
در فرهنگ آکسفورد آمده است:
«حرکات ناگهانی وشدید سطح زمین»
از تعاریف ذکر شده در فوق ومنابع دیگر می توان برداشت زیر را نمود:
« زمین لرزه یا زلزله عبارت است از لرزش و جنبش خفیف یا شدید زمین است(یا حرکات و ارتعاشات ناگهانی سطخ زمین) که به علت آزاد شدن انرژی ناشی از گسیختگی سریع در گسلهای پوستهٔ زمین در مدتی کوتاه به وقوع میپیوندد. که در صورت شدت زیاد در مراکز انسانی موجب خسارتهاوزیانهای فراوان می شود. »
زلزله از یکطرف موجب شکسته شدن و جابجائی بین توده های سنگی پوسته زمین می شود و ازطرف دیگر همین جابجائی و شکسته شدن منجر به ایجاد امواج و انتشار در درون زمین می شود ، مانند انداختن قطعه سنگی در حوض یا دریاچه که منجر به ایجاد امواجی می شود.
زلزله مانند شکسته شدن قطعه چوب خشک شده ای می ماند که از یکطرف موجب گسیخته شدن چوب و از طرف دیگر موجب انتشار امواج در اطراف خود می شود.
محلی که منشاء زلزله بوده و انرژی از آنجا خارج میشود را کانون زلزله، و نقطهٔ بالای کانون در سطح زمین را مرکز زلزله گویند. پیش از وقوع زمینلرزه اصلی معمولاً زلزلههای نسبتا خفیفتری در منطقه روی میدهد که به پیشلرزه معروفند. به لرزشهای بعدی زمینلرزه نیز پسلرزه گویند که با شدت کمتر و با فاصله زمانی گوناگون میان چند دقیقه تا چند ماه رخ میدهند.
دلیل پیدایش زمین لرزه:
در طول تاریخ حیات بشر زلزله های زیادی رخ داده است که همین امر باعث شده تا بشر دلایلی برای چرایی وقوع زلزله ذکر نماید . در دوره های قدیم وباستان که علم ودانش بشری اندک بوده ونسبت به پدیده های مختلف طبیعی جهل داشته و در عین حال بدنبال منشاءآنها هم بوده است و چون علتی را نمی دیده منشاء حواذث طبیعی مثل زلزله را به نیروهای ناشناس غیرطبیعی و ماوراء طبیعی نسبت می دادند . زلزله را خشم خدایان بر بشر یا خشم پلوتون می دانستند. با افزایش علم وبالا رفتن سطح دانش انسان بتدریج بدنبال منشاء و علل حوادث طبیعی در خود طبیعت رفت .
ارسطو معتقد بود که در حفره های زیر زمین گازهای وجود دارد ، زمانی که این گازها رها می شوند باعث ایجاد زلزله می شود . البته این نظریه را می توان در زلزله هایی که اطراف آتشفشانها رخ می دهد تا حدودی بکار برد.
دسته بندی | زمین شناسی |
بازدید ها | 14 |
فرمت فایل | doc |
حجم فایل | 194 کیلو بایت |
تعداد صفحات فایل | 16 |
ساختار بلوری جامدات
دید کلی
از لحاظ ترمودینامیکی پایدارترین الگوهای انباشتگی متعاق به گونه ای است که انرژی آزاد آن در دما و فشار مورد نظر حداقل باشد.ارزیابی انرژی آزاد معمولا مشکل است،اما تجزیه و تحلیل سهم های مر بوط بر حسب اندر کنشهای کولمبی بین یونهاکاملا ممکن می باشد.از آنجائیکه فاکتورهایی که یک ساختمان را بر دیگری مطلوب می کنند نهایتا بایکدیگر متعادل میشوند،بسیاری از جامدات بلوری در فرمهای متفاوت وجود دارندیا اصطلاحا پلی مورف می باشند.پلی مورفیسم خاصیتی از تمام جامدات و نه تنها تر کیبات یونی است.مثالی از این خاصیت ،وجود فازهای سفید وسیاه از فسفر عنصری و فازهای کلسیت و آرگونیت و از کربنات کلسیم است.
تقسیم بندی پیوند ها
نیروهای بین اتم ها را می توان به چهار دسته تقسیم کرد:
1-پیوند کوالانسی:
زمانی این پیوند ایجاد می شود که اوربیتال لایه ظرفیت در اتم های غیر فلز به گونه ای هم پوشانی کنند که دانسیته الکترون بین اتم ها افزایش یابد (همپوشانی مثبت ) چون این اتم ها جاذبه مشابه یا یکسانی برای الکترونها دارند انتقال الکترون از یک اتم به اتم دیگر صورت نمی گیرد بلکه الکترونها بین آنها به اشتراک گذاشته می شود . یک پیوند کوالانسی مشتمل بر یک جفت الکترون با اسپین های مخالف است و دو اتم در آن نیز سهیم هستند این نیرو در حقیقت نیروی نگهدارنده بین اتم ها در یک مولکول است.
2-پیوند یونی :
پیوند حاصل از نیروهای جاذبه الکترواستاتیکی (کولمبی ) بین یک فلز و یک غیر فلز است. در پیوند های یونی خالص بین اتم ها اشتراک الکترون وجود ندارد مثلاً در واکنش بین سزیم وفلوئور یک الکترون از یک اتم سزیم به یک اتم فلوئور منتقل می شود و ذرات بارداری به نام یون تولید می شود.
3-پیوند اندروالس:
این پیوند را نیروی پراکندگی لندن می نامند و در مولکولهای فاقد دو قطبی دائمی موجب می شود به صورت مایع درآیند منشاء این نیرو حرکت الکترونها است از واپیچش ابر الکترونی مولکول دو قطبی لحظه ای به وجود می آید و در هر لحظه موقعیت قطبهای مثبت و منفی به دلیل حرکت الکترونها تغییر می کند. در نتیجه مولکول در کل فاقد گشتاور دو قطبی است.نیروی لندن شامل جاذبه بین این دو قطبی های لحظه ای است. این نیرو در مولکولهای بزرگ و پیچیده ای که دارای ابر الکترونی بزرگی هستند و به راحتی قطبیده (پلاریزه )می شوند به سرعت افزایش می یابد نیروی اصلی افزایش می یابد نیروی اصلی در آرگون و تتراکلرید کربن جامد همین نیرو است
4-پیوند فلزی:
این نوع پیوند شبکه های منظم از اتم هایی که کمبود الکترون دارند یا گروهی از اتم ها مانند فلز است و آلیاژها را در کنار یکدیگر نگه می دارند بارزترین خصوصیت این پیوند این است که الکترونهای پیوندی در تمام سطوح کریستال به طور نسبتاً سستی به اتم وابسته اند و آزادانه در سراسر بلور فلزی حرکت می کنند زیرا پتانسیل یونیزاسیون و الکترونگاتیوی فلزات بسیار کم است . یونهای مثبت فلزی نقاط شبکه ای ثابت را در بلور اشغال می کنند و ابر منفی الکترونهای آزاد بلور را به هم نگه می دارد .
تقسیم بندی بلور ها :
بهترین تقسیم بندی بلور ها بر حسب نوع ذرات تشکیل دهنده و نیروهای نگهدارنده آنهاست:
کوالانسی، یونی، و اندوالسی، فلزی
1-بلورهای کوالانسی ،(مشبک):
ذرات تشکیل دهنده این بلور اتم ها هستند که با شبکه ای از پیوند های کوالانسی به یکدیگر متصل هستند این مواد بسیار دیر گداز و سخت بوده و برای از بین بردن ساختار بلوری باید تعداد زیادی پیوند کوالانسی شکسته شود الماس که در آن اتم های کربن به وسیله پیوند های کوالانسی به یکدیگر متصل شده و ساختار سه یعدی به وجود می آورد. نمونه ای از این نوع بلورها است.شکل زیر یک نوع بلور کوالانسی را که مربوط به کوارتز (سیلسیم دیوکسید sio2
بلورهای یونی: عامل نگهدارنده یونهای مثبت و منفی در ساختار بلورها وجاذ به الکترواستاتیکی است و به دلیل قوی بودن این نیرو ها نقطه ذوب بالایی دارند سخت و شکننده اند در حالت مذاب یا محلول رسانای خوبی برای جریان الکتریسیته اند اما در حالت جامد یونها آزادی حرکت ندارند. و نارسانا هستند.شکل زیر بلور یونی فلورئوریت را نشان می دهد.
3-بلورهای مولکولی_: ذرات تشکیل دهنده این بلور ها مولکول هستند و قدرت نگهدارنده آنها به اندازه نیروهای الکترواستاتیکی در بلورهای یونی نیست و در نتیجه بلورهای مولکول نرم هستند و دمای ذوب پایین تر از300 دارند.
نیروهای پراکندگی لندن مولکول های غیر قطبی را در ساختار بلوری نگه می دارد و بلور مولکولهای قطبی نیروهای دو قطبی_ دو قطبی و همچنین نیروهای لندن وجود دارند و دمای ذوب این ترکیبات بیش تر از ترکیبات غیر قطبی با ساختمان یکسان است.
دسته بندی | زمین شناسی |
بازدید ها | 11 |
فرمت فایل | doc |
حجم فایل | 26 کیلو بایت |
تعداد صفحات فایل | 22 |
مقدمه
سنگ از نظر زمینشناسان به مادهی سازندهی پوسته و بخش جامد سستکرهی زمین گفته میشود. سنگها از یک یا چند کانی درست شدهاند و از نظر چگونگی پدید آمدن در سه گروه سنگهای آذرین، سنگهای رسوبی و سنگهای دگرگونی جای میگیرند. سنگهای آذرین از سرد شدن گدازهی آتشفشانها به وجود میآیند. سنگهای رسوبی پیامد فرسایش سنگها و انباشته شدن رسوبها در دریاها هستند. هنگامی که سنگی در فشار و گرمای زیاد قرار گیرد، سنگ دگرگونی پدید میآید.
سنگها و کانیها
کرهی زمین از نظر ویژگیهای فیزیکی ساختار لایهای دارد. بخش مرکزی آن جامد است، بیشتر از آهن و نیکل درست شده و هستهی درونی نامیده میشود. پیرامون هستهی درونی را لایهی مایعی از آهن و نیکل فراگرفته که هستهی بیرونی نام دارد. پیرامون هستهی بیرونی را لایهای به نام گوشته در بر میگیرد که خود از لایهای جامد و سخت به نام گوشتهی زیرین و لایهای نرمتر و خمیری به نام سستکره درست شده است. پیرامون گوشته را لایهی نازک و جامدی به نام پوسته فراگرفته که بیشتر از سیلیس، اکسیژن و آلومینیوم درست شده است. زمینشناسان به مواد طبیعی و بی جان سازندهی پوسته سنگ میگویند و بیرونیترین لایهی زمین را سنگکره مینامند.
سنگها از یک یا چند کانی درست شدهاند. کانی به موادی بیجان، جامد و بلوری گفته می شود که ترکیب شیمیایی به نسبت ثابتی دارند. بیش از 3 هزار گونه کانی در طبیعت یافت شده است که نزدیک 20 تا 25 گونه از آنها در ساختمان بسیاری از سنگها وجود دارند. بیشتر سنگها از چند کانی درست شدهاند، مانند گرانیت که بخش زیادی از آن از سه کانی کوارتز، فلدسپات و بیوتیت است. هر گروه از سنگها نیز دارای کانیهای مشخصی هستند که در گروه سنگهای دیگر وجود ندارند یا بسیار اندک هستند. برای نمونه، کانی هالیت فقط در سنگهای رسوبی دیده می شود و در سنگهای آذرین یا دگرگونی دیده نمی شود. کانی ولاستونیت نیز فقط در سنگهای دگرگونی یافت می شود. با این همه، برخی از کانی ها، مانند کوارتز، ممکن است در هر گونه سنگی وجود داشته باشند.
سنگها و کانیهای آنها
گونهی سنگ
کانیهایی که در آن یافت میشود
سنگهای آذرین
ارتوز، پرتیت، میکروکلین، پلاژیوکلاز، کوارتز، نفلین،
لوسیت، هورنبلند، اوژیت، بیوتیت، مسکوویت، الیوین
سنگهای رسوبی
کانیهای رسی، کلسیت، دولومیت، کوارتز، هالیت، سیلوین،
ژیپس، انیدریت،گلوکونیت، اکسیدها(بهویژه آهن)،کربناتهای دیگر
سنگهای دگرگونی
استرولیت، کیانیت، آندالوزیت، سیلیمانیت، گرونا، ولاستونیت،
ترومولیت، کلریت، گرافیت، تالک
سنگهای آذرین
هرچه بیشتر به ژرفای زمین برویم، دما بالاتر می رود و در ژرفای زیاد به اندازهی میرسد که برای ذوب شدن سنگها کافی است. با این همه، مواد درونی زمین به حالت مذاب نیستند و فشار زیادی که از لایههای بالایی بر لایههای زیرین وارد میشود، از ذوب شدن سنگها جلوگیری میکند. اما در جاهایی از ژرفای زمین که به دلیلی(برای نمونه، در پی جایهجایی ورقههای سنگ کره) از فشار کاسته میشود یا سنگهای سطحی زمین به زیر سطح فرو میروند، سنگها ذوب میشوند. هر جایی که سنگها ذوب شوند، مادهی مذاب، که ماگما نام دارد، به سوی بالا راه پیدا میکند و آرام آرام دمای آن کاهش مییابد و سنگهای آذرین را پدید میآورد.
ماگما ممکن است به بخشهای بالایی پوسته نفوذ کند یا از راه شکافها و سوراخها به سطح پوسته راه یابد. ماگمایی که از سطح پوسته بیرون نمیزند به آهستگی و طی سالها سرد میشود و سنگهای آذرین درونی را میسازد. به ماگمایی که از دهانهی آتشفشان بیرون میآید و به سطح زمین میرسد، گدازه میگویند. همهی حجم گدازهای که به سطح زمین میآید، به حالت مذاب نیست و قطعههای ذوب نشدهی سنگ و کانیهای بلوری را نیز در خود دارد. گدازه طی چند روز سرد میشود و سنگهای آذرین بیرونی را میسازد.
بررسی ترکیب شیمیایی سنگهای آذرین و گدازهی آتشفشانهای فعال نشان داده است که ماگما یک ترکیب سیلیکاتی با اندکی اکسیدهای فلزی، بخار آب و مواد گازی است. سنگهای آذرین را بر پایهی درصد این مواد در سه گروه گرانیتی(اسیدی)، بازالتی(بازی) و آندزیتی(میانه) جای میدهند. سنگهای آذرینی مانند ریولیت و داسیت را که محتوای سیلیس آنها بالاست، یعنی بیش از 63 درصد 2 SiO دارند، از گروه سنگهای آذرین اسیدی به شمار میآورند. سنگهای آذرینی مانند آندزیت که بین 52 تا 63 درصد 2 SiO دارند، از سنگهای آذرین میانه و سنگهایی مانند بازالت و گابرو را که محتوای سیلیسی کمتری دارند، از سنگهای آذرین بازی هستند. برخی از سنگهای آذرین، مانند پریدوتیت، را که محتوای سیلیسی آنها بسیار پایین است، فرابازی می دانند.
بافت سنگهای آذرین
زمینشناسان در بررسیهای صحرایی، که ابزارهای پیچیدهی آزمایشگاهی در دسترس نیست، از اندازه و آرایش بلورهای سنگ، که بافت سنگ نام دارد، برای توصیف سنگها بهره میگیرند. اصطلاح بافت سنگ هنگام بررسی سنگ زیر میکروسکوپ نیز به کار می رود. بافت سنگ آذرین علاوه بر این که آن را از سنگها دیگر جدا میکند، ما را از درونی بودن یا بیرونی بودن آن و حتی ژرفایی که سنگ در آنجا از ماگما پدید آمده است، آگاه میسازد.
1. بافت نهانبلورین. بلورها را نمیتوان با چشم غیرمسلح دید. اگر بلورها به اندازهای کوچک باشند که فقط با میکروسکوپ پولاریزان دیده شوند، اصطلاح میکروکریستالین و اگر فقط با میکروسکوپ الکترونی یا پرتوهای ایکس شناسایی شوند، اصطلاح کریپتوکریستالین را به کار میبرند.
2. بافت آشکاربلورین. بلورها درشت و از 2 تا 5 میلی متر هستند. این بافت زمانی پدید میآید که ماگما به آهستگی درون زمین سرد شود.
3. بافت پگماتیتی. گونهای از بافت آشکاربلورین است که اندازهی بلورهای آن بزرگتر از 5 سانتیمتر و حتی چند متر است.
4. بافت پرفیری. گونهای از بافت آشکاربلورین است که دارای بلورهای درشت در زمینهای از بلورهای ریز است. این بافت نتیجهی سرد شدن آهسته زیر سطح زمین و آمدن ناگهانی ماگما به سطح زمین است که نخست با پدیدآمدن بلورهای درشت و سپس با بلورهای ریز همراهی میشود.
5. بافت سوراخدار. در پی سرد شدن تند گدازهای که گاز فراوان در خود دارد، بر سطح زمین پدید میآید. سنگپا نمونهای از این بافت است.
6. بافت شیشیهای. در برخی فورانهای آتشفشانی، گدازه به درون آب ریخته میشود و بسیار تند سرد میشود. این گونه سنگها بلور ندارند و بافتی مانند شیشه دارند.
7. بافت آذرآواری. هنگامی که گدازه به صورت ذرههای خاکستر به هوا پرتاب میشود و آن ذرهها به صورت لایهای تهنشین میشوند، سنگهایی را میسازند که ذرههای سازندهی آنها آذرین، ولی تهنشینی آنها شبیه سنگهای رسوبی است.
8. بافت آگلومرا. اگر اندازهی ذرههای پرتابی از دهانهی آتشفشان بزرگ باشد، پس از تهنشین شدن به یکدیگر جوش میخورند و سنگ یکپارچهای را میسازند که آگلومرا نامیده میشود.
خانوادههای سنگهای آذرین
سنگهای آذرین را بر پایهی بافت، درصد سیلیس، رنگ، چگالی، ترکیب شیمیایی و در نظر داشتن ویژگیهای دیگر، طبقهبندی میکنند.
1. خانوادهی گرانیت- ریولیت. گرانیت از شناختهشدهترین سنگهای آذرین درونی است که فراوانی و زیبایی آن پس از صیقل یافتن، باعث شده است که در معماری مورد توجه باشد. نام این سنگ از واژهی لاتین گرانوم به معنای دانهی گندم گرفته شده است، زیرا بیشتر کانیهای آن به اندازهی دانهی گندم است. بافت آن از نوع آشکاربلورین است و بیشتر از فلدسپات پتاسیمدار، پلاژیوکلاز سدیمدار و کوارتز درست شده است. کانیهای بیوتیت، آمفیبول، هورنبلند و گاهی میکای سفید نیز در ساختمان آن دیده میشود.گرانیتها به رنگهای سفید، خاکستری و صورتی د
یده میشوند که برخاسته از نوع فلدسپات آنهاست.
دسته بندی | زمین شناسی |
بازدید ها | 27 |
فرمت فایل | doc |
حجم فایل | 448 کیلو بایت |
تعداد صفحات فایل | 21 |
سنگ شناسی رسوبی
پیشگفتار
سنگ های رسوبی بیش ازهفتادوپنج درصدسطح زمین را می پوشانند. یک توده رسوبی شامل موادی است که در سطح یا نزدیک سطح زمین ودر محیطی که دارای فشار و حرارت پایین می باشد، انباشته میگردد. معمولاً مواد رسوبی از مایعی که آن ها را در بر می گیرد، در محیط های مختلف رسوبی ته نشین می گردند ، رسوبات به روش های مختلفی تشکیل می شوند. رسوبات در برخی از مواقع از هوازدگی و فرسایش سنگ های قدیمی تر تشکیل می شوند که در این شرایط به رسوب تخریبی یا آواری می گویند. گاهی اوقات رسوبات در اثر فرایند های بیولوژیکی ، شیمیایی و یا بیو شیمیایی ، نیز تشکیل می شوند.
بعنوان مثال تشکیل رسوبات تبخیری نظیر نمک و گچ یک فرایند شیمیایی محض و تشکیل بافیمانده صدف جانداران آب زی یک فرایند بیوشیمیایی است. مواد رسوبی هرگاه تحت تاُثیر فرایندهای سنگ زدایی قرار گیرند تبدیل به سنگ رسوبی می شوند . مطالعه سنگ های رسوبی برای ما بسیار حائز اهمیت است ، زیرا اطلاعات ما دربارهی چینه شناسی و بسیاری از معلومات ما درباره تاریخ گذشته زمین در این سنگ ها نهفته است. بخش مهمی از ذخایر معدنی که دارای ارزش قابل توجهی می باشند از سنگ های رسوبی بدست می آیند. بعنوان مثال همه یا قسمت عمده نفت ، گاز طبیعی ، زغال ، نمک ، گوگرد، املاح پتاسیم، سنگ گچ ، سنگ اهک ، فسفات، اورانیوم ، منگنز، و همچنین موادی مانند : ماسه، سنگ های ساختمانی، رس های سفال سازی، از سنگ های رسوبی بدست می آیند. بدلیل ارزش اهمیت مطالعه این گونه سنگ ها در کشورهای پیشرفته ،دین رشته های تخصصی بررسی این سنگ ها در مقاطع کارشناسی ارشد و دکتری دایر شده است، در کشور ما نیز بعد از انقلاب پرشکوه اسلامی توجه خاصی بر زمین شناسی خصوصاً رسوب شناسی و سنگ شناسی رسوبی شده است و این رشته تخصصی در مقاطع کارشناسی ارشد و دکتری تدریس شده است.
سنگ های رسوبی
سه جزء اصلی بافتی سنگ های رسوبی تخریبی عبارتند از
1- دانه ها که در حد گراول ، ماسه ، و سیلت میباشند
2- ماتریکس یا ماده زمینه که از ذرات دانه ریز در حد سیلت و رس تشکیل شده و دانه های رسوبی را در بر میگیرد.
3- سیمان که به صورت شیمیایی تشکیل شده وعمدتاً از جنس سیلیس و یا کربنات کلسیم می باشد، البته برخی از اوقات سیمان از جنس اکسید آهن نیز دربین دانه ها تشکیل می شود. سیمان دانهها را به یکدیگر می چسباند. در بسیاری از مواقع بین دانه ها فضاهای خالی باقی می ماند که بعداً ممکن است توسط آب های زیرزمینی و یا نفت و گاز اشغال شود که برخی از رشته های تخصصی زمین شناسی نظیر آب شناسی و زمین شناسی نفت وظیفه بررسی این فضاهای خالی را که اصطلاحاً تخلخل نامیده میشوند را دارند.
1_ اندازه دانهها
یکی از مهمترین شاخصه های بافتی رسوبات و سنگ های رسوبی اندازه دانه های تشکیل دهنده آن می باشد. زیرا توسط بررسی اندازه دانه ها میتوان انرژی عامل حمل ونقل و دوری و نزدیکی رسوب نسبت به ناحیه فشار را تعیین نمود و به واسطه اندازه دانه ها تقسیم بندی رسوبات و سنگ های رسوبی مطابق جدول زیر انجام می شود. طبقه بندی دانه ها از روی بلندترین قطر آنها صورت می گیرد که برای اولین بار توسط ونثورث واودرن ارایه شد. این مقیاس لگاریتمی بوده و در آن ، هر درجه ای برابر بزرگتر از درجه قبلی است. امروزه این مقیاس میلی متری نیز معروف است.
2_شکل دانه grain shape
شکل دانه عبارت از توصیف فرم هندسی دانه در رسوب یا سنگ است که توسط فرم، کروپت ، گردشدگی و بافت سطح دانه مورد بررسی قرار میگیرد.
الف ) فرم form : فرم عبارت است از رابطه بین سه قطر اصلی تشکیل دهنده یک دانه می باشد ( اقطار بلند، کوتاه، متوسط) که براساس آن دانه ها ممکن است به اشکال زیر دیده شوند.